Suppr超能文献

酵母细胞可以进入不同的静止状态。

Yeast cells can access distinct quiescent states.

机构信息

Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

Genes Dev. 2011 Feb 15;25(4):336-49. doi: 10.1101/gad.2011311. Epub 2011 Feb 2.

Abstract

We conducted a phenotypic, transcriptional, metabolic, and genetic analysis of quiescence in yeast induced by starvation of prototrophic cells for one of three essential nutrients (glucose, nitrogen, or phosphate) and compared those results with those obtained with cells growing slowly due to nutrient limitation. These studies address two related questions: (1) Is quiescence a state distinct from any attained during mitotic growth, and (2) does the nature of quiescence differ depending on the means by which it is induced? We found that either limitation or starvation for any of the three nutrients elicits all of the physiological properties associated with quiescence, such as enhanced cell wall integrity and resistance to heat shock and oxidative stress. Moreover, the starvations result in a common transcriptional program, which is in large part a direct extrapolation of the changes that occur during slow growth. In contrast, the metabolic changes that occur upon starvation and the genetic requirements for surviving starvation differ significantly depending on the nutrient for which the cell is starved. The genes needed by cells to survive starvation do not overlap the genes that are induced upon starvation. We conclude that cells do not access a unique and discrete G(0) state, but rather are programmed, when nutrients are scarce, to prepare for a range of possible future stressors. Moreover, these survival strategies are not unique to quiescence, but are engaged by the cell in proportion to nutrient scarcity.

摘要

我们对酵母因三种必需营养物质(葡萄糖、氮或磷酸盐)之一的营养饥饿而进入静止期的表型、转录、代谢和遗传进行了分析,并将这些结果与因营养限制而生长缓慢的细胞的结果进行了比较。这些研究解决了两个相关的问题:(1)静止期是否是一种与有丝分裂生长过程中任何阶段都不同的状态?(2)诱导静止期的方式是否会导致静止期的性质不同?我们发现,无论限制或饥饿任何一种营养物质,都会引发与静止期相关的所有生理特性,如增强细胞壁完整性以及对热休克和氧化应激的抵抗力。此外,饥饿会导致一个共同的转录程序,这在很大程度上是细胞生长缓慢时发生的变化的直接推断。相比之下,饥饿时发生的代谢变化以及生存所需的遗传要求因饥饿的营养物质而异。细胞在饥饿时需要的基因与饥饿时诱导的基因并不重叠。我们得出结论,细胞不会进入独特而离散的 G0 状态,而是在营养物质匮乏时被编程,为一系列可能的未来应激源做好准备。此外,这些生存策略并非静止期所特有,而是细胞根据营养物质的匮乏程度来进行调节。

相似文献

1
Yeast cells can access distinct quiescent states.
Genes Dev. 2011 Feb 15;25(4):336-49. doi: 10.1101/gad.2011311. Epub 2011 Feb 2.
3
Autophagy is required for G₁/G₀ quiescence in response to nitrogen starvation in Saccharomyces cerevisiae.
Autophagy. 2014 Oct 1;10(10):1702-11. doi: 10.4161/auto.32122. Epub 2014 Aug 12.
6
Survival of starving yeast is correlated with oxidative stress response and nonrespiratory mitochondrial function.
Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):E1089-98. doi: 10.1073/pnas.1101494108. Epub 2011 Jul 6.
8
9
Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation.
Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3148-53. doi: 10.1073/pnas.0308321100. Epub 2004 Feb 18.
10
Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations.
Mol Biol Cell. 2010 Jan 1;21(1):198-211. doi: 10.1091/mbc.e09-07-0597. Epub 2009 Nov 4.

引用本文的文献

1
Quiescence Multiverse.
Biomolecules. 2025 Jul 4;15(7):960. doi: 10.3390/biom15070960.
2
Vacuolar Proteases of from Clades III and IV and Their Relationship with Autophagy.
J Fungi (Basel). 2025 May 18;11(5):388. doi: 10.3390/jof11050388.
3
Role of the NuRD complex and altered proteostasis in cancer cell quiescence.
bioRxiv. 2025 Feb 14:2025.02.10.637435. doi: 10.1101/2025.02.10.637435.
4
Sir2 is required for the quiescence-specific condensed three-dimensional chromatin structure of rDNA.
bioRxiv. 2024 Dec 12:2024.12.12.628092. doi: 10.1101/2024.12.12.628092.
5
Phenotypic heterogeneity follows a growth-viability tradeoff in response to amino acid identity.
Nat Commun. 2024 Aug 2;15(1):6515. doi: 10.1038/s41467-024-50602-8.
6
Initial acidic media promotes quiescence entry in .
MicroPubl Biol. 2024 Feb 24;2024. doi: 10.17912/micropub.biology.001071. eCollection 2024.
7
Initial nutrient condition determines the recovery speed of quiescent cells in fission yeast.
Heliyon. 2024 Feb 24;10(5):e26558. doi: 10.1016/j.heliyon.2024.e26558. eCollection 2024 Mar 15.
9
Post-transcriptional regulation shapes the transcriptome of quiescent budding yeast.
Nucleic Acids Res. 2024 Feb 9;52(3):1043-1063. doi: 10.1093/nar/gkad1147.
10
Acidic media promotes quiescence entry in .
bioRxiv. 2023 Nov 21:2023.11.20.567958. doi: 10.1101/2023.11.20.567958.

本文引用的文献

1
Mass spectrometry-based metabolomics of yeast.
Methods Enzymol. 2010;470:393-426. doi: 10.1016/S0076-6879(10)70016-1. Epub 2010 Mar 1.
2
Trehalose is a key determinant of the quiescent metabolic state that fuels cell cycle progression upon return to growth.
Mol Biol Cell. 2010 Jun 15;21(12):1982-90. doi: 10.1091/mbc.e10-01-0056. Epub 2010 Apr 28.
3
Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae.
Curr Genet. 2010 Feb;56(1):1-32. doi: 10.1007/s00294-009-0287-1.
4
Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations.
Mol Biol Cell. 2010 Jan 1;21(1):198-211. doi: 10.1091/mbc.e09-07-0597. Epub 2009 Nov 4.
5
Glucose regulates transcription in yeast through a network of signaling pathways.
Mol Syst Biol. 2009;5:245. doi: 10.1038/msb.2009.2. Epub 2009 Feb 17.
6
Predicting cellular growth from gene expression signatures.
PLoS Comput Biol. 2009 Jan;5(1):e1000257. doi: 10.1371/journal.pcbi.1000257. Epub 2009 Jan 2.
7
Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast.
Mol Biol Cell. 2009 Feb;20(3):891-903. doi: 10.1091/mbc.e08-08-0852. Epub 2008 Dec 3.
8
Predictive behavior within microbial genetic networks.
Science. 2008 Jun 6;320(5881):1313-7. doi: 10.1126/science.1154456. Epub 2008 May 8.
9
Influence of genotype and nutrition on survival and metabolism of starving yeast.
Proc Natl Acad Sci U S A. 2008 May 13;105(19):6930-5. doi: 10.1073/pnas.0802601105. Epub 2008 May 2.
10
How Saccharomyces responds to nutrients.
Annu Rev Genet. 2008;42:27-81. doi: 10.1146/annurev.genet.41.110306.130206.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验