Tagkopoulos Ilias, Liu Yir-Chung, Tavazoie Saeed
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA.
Science. 2008 Jun 6;320(5881):1313-7. doi: 10.1126/science.1154456. Epub 2008 May 8.
The homeostatic framework has dominated our understanding of cellular physiology. We question whether homeostasis alone adequately explains microbial responses to environmental stimuli, and explore the capacity of intracellular networks for predictive behavior in a fashion similar to metazoan nervous systems. We show that in silico biochemical networks, evolving randomly under precisely defined complex habitats, capture the dynamical, multidimensional structure of diverse environments by forming internal representations that allow prediction of environmental change. We provide evidence for such anticipatory behavior by revealing striking correlations of Escherichia coli transcriptional responses to temperature and oxygen perturbations-precisely mirroring the covariation of these parameters upon transitions between the outside world and the mammalian gastrointestinal tract. We further show that these internal correlations reflect a true associative learning paradigm, because they show rapid decoupling upon exposure to novel environments.
稳态框架主导了我们对细胞生理学的理解。我们质疑仅靠稳态是否足以解释微生物对环境刺激的反应,并探索细胞内网络以类似于后生动物神经系统的方式进行预测行为的能力。我们表明,在精确界定的复杂生境下随机进化的计算机模拟生化网络,通过形成允许预测环境变化的内部表征,捕捉了不同环境的动态、多维结构。我们通过揭示大肠杆菌转录反应与温度和氧气扰动之间惊人的相关性——精确反映这些参数在外界与哺乳动物胃肠道之间转换时的协变,为这种预期行为提供了证据。我们进一步表明,这些内部相关性反映了一种真正的联想学习模式,因为它们在接触新环境时会迅速解耦。