Suppr超能文献

使用最优 ROC 曲线进行变量选择:一种在骨质疏松症传统中药研究中的应用。

Variable selection using the optimal ROC curve: an application to a traditional Chinese medicine study on osteoporosis disease.

机构信息

School of Statistics, Renmin University, Beijing 100872, People's Republic of China.

出版信息

Stat Med. 2012 Mar 30;31(7):628-35. doi: 10.1002/sim.3980. Epub 2011 Feb 3.

Abstract

In biomedical studies, there are multiple sources of information available of which only a small number of them are associated with the diseases. It is of importance to select and combine these factors that are associated with the disease in order to predict the disease status of a new subject. The receiving operating characteristic (ROC) technique has been widely used in disease classification, and the classification accuracy can be measured with area under the ROC curve (AUC). In this article, we combine recent variable selection methods with AUC methods to optimize diagnostic accuracy of multiple risk factors. We first describe one new and some recent AUC-based methods for effectively combining multiple risk factors for disease classification. We then apply them to analyze the data from a new clinical study, investigating whether a combination of traditional Chinese medicine symptoms and standard Western medicine risk factors can increase discriminative accuracy in diagnosing osteoporosis (OP). Based on the results, we conclude that we can make a better diagnosis of primary OP by combining traditional Chinese medicine symptoms with Western medicine risk factors.

摘要

在生物医学研究中,有多种信息来源,其中只有少数与疾病相关。选择和组合这些与疾病相关的因素对于预测新对象的疾病状态非常重要。接收者操作特征 (ROC) 技术已广泛用于疾病分类,可通过 ROC 曲线下面积 (AUC) 来衡量分类准确性。在本文中,我们将最近的变量选择方法与 AUC 方法相结合,以优化多个危险因素的诊断准确性。我们首先描述一种新的和一些最近的基于 AUC 的方法,用于有效地组合多个危险因素进行疾病分类。然后,我们将其应用于分析来自一项新的临床研究的数据,研究是否可以通过结合中医症状和标准西医危险因素来提高骨质疏松症 (OP) 的诊断准确性。基于研究结果,我们得出结论,通过将中医症状与西医危险因素相结合,我们可以更好地诊断原发性 OP。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验