Suppr超能文献

评估诊断试验:ROC 曲线下面积和误差平衡。

Evaluating diagnostic tests: The area under the ROC curve and the balance of errors.

机构信息

Imperial College, London.

出版信息

Stat Med. 2010 Jun 30;29(14):1502-10. doi: 10.1002/sim.3859.

Abstract

Because accurate diagnosis lies at the heart of medicine, it is important to be able to evaluate the effectiveness of diagnostic tests. A variety of accuracy measures are used. One particularly widely used measure is the AUC, the area under the receiver operating characteristic (ROC) curve. This measure has a well-understood weakness when comparing ROC curves which cross. However, it also has the more fundamental weakness of failing to balance different kinds of misdiagnoses effectively. This is not merely an aspect of the inevitable arbitrariness in choosing a performance measure, but is a core property of the way the AUC is defined. This property is explored, and an alternative, the H measure, is described.

摘要

由于准确的诊断是医学的核心,因此能够评估诊断测试的有效性非常重要。有多种准确性度量标准可供使用。一个特别广泛使用的度量标准是 AUC,即接收器操作特征 (ROC) 曲线下的面积。当比较交叉的 ROC 曲线时,该度量标准具有一个众所周知的弱点。然而,它也具有更根本的弱点,即无法有效地平衡不同类型的误诊。这不仅仅是选择性能度量标准时不可避免的任意性的一个方面,而是 AUC 定义方式的核心属性。本文探讨了这一特性,并描述了一种替代方法,即 H 度量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验