Suppr超能文献

使用无试剂显微镜图像分析技术在应激模型酒精发酵过程中测定酵母活力。

Determination of yeast viability during a stress-model alcoholic fermentation using reagent-free microscopy image analysis.

机构信息

Unité Mixte de Recherche Ingénierie des Agropolymères et Technologies Emergentes (UMR IATE), Université Montpellier 2, PlaceEugène Bataillon, CC023, 34095 Montpellier Cedex 05, France.

出版信息

Biotechnol Prog. 2011 Mar-Apr;27(2):539-46. doi: 10.1002/btpr.549. Epub 2011 Feb 2.

Abstract

A dedicated microscopy imaging system including automated positioning, focusing, image acquisition, and image analysis was developed to characterize a yeast population with regard to cell morphology. This method was used to monitor a stress-model alcoholic fermentation with Saccharomyces cerevisiae. Combination of dark field and epifluorescence microscopy after propidium iodide staining for membrane integrity showed that cell death went along with important changes in cell morphology, with a cell shrinking, the onset of inhomogeneities in the cytoplasm, and a detachment of the plasma membrane from the cell wall. These modifications were significant enough to enable a trained human operator to make the difference between dead and viable cells. Accordingly, a multivariate data analysis using an artificial neural network was achieved to build a predictive model to infer viability at single-cell level automatically from microscopy images without any staining. Applying this method to in situ microscope images could help to detect abnormal situations during a fermentation course and to prevent cell death by applying adapted corrective actions.

摘要

开发了一种专用的显微镜成像系统,包括自动定位、聚焦、图像采集和图像分析,用于根据细胞形态特征来对酵母群体进行分析。该方法用于监测经过碘化丙啶染色后用于膜完整性的暗场和荧光显微镜,以监测酿酒酵母的应激模型酒精发酵。结果表明,细胞死亡伴随着细胞形态的重要变化,细胞收缩,细胞质不均匀,质膜从细胞壁上脱离。这些变化足以使经过训练的操作人员能够区分死活细胞。因此,使用人工神经网络进行了多元数据分析,以构建一个预测模型,能够从无需染色的显微镜图像中自动推断单细胞的活力。将该方法应用于原位显微镜图像,可以帮助在发酵过程中检测异常情况,并通过采取适当的纠正措施来防止细胞死亡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验