Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
Mol Immunol. 2011 Mar;48(6-7):835-45. doi: 10.1016/j.molimm.2010.12.008. Epub 2011 Feb 2.
Herpesviruses escape elimination by cytotoxic T lymphocytes through specific interference with the antigen-presenting function of MHC class I (MHC I) molecules. The transporter associated with antigen processing (TAP) forms a bottleneck in the MHC I antigen presentation pathway. The fact that multiple viruses, especially herpesviruses, encode molecules blocking TAP function is a case in point. The action of these viral immuno evasins is usually potent and very specific, making these proteins valuable tools for studying the cell biology of antigen presentation, including alternative antigen processing pathways. Yet, no dedicated TAP inhibitor has been described for any of the mouse herpesviruses. To permit the use of immuno evasins derived from non-mouse herpesviruses in mouse models, we assessed the cross-species activity of four TAP inhibitors and one tapasin inhibitor in the context of three different mouse haplotypes, H-2(b), H-2(d), and H-2(k). Two of the four TAP inhibitors, the bovine herpesvirus 1-encoded UL49.5 and the human cytomegalovirus (HCMV)-encoded US6 protein, potently inhibited mouse TAP. ICP47 and BNLF2a, encoded by herpes simplexvirus 1 and Epstein-Barr virus, respectively, failed to inhibit TAP in all mouse cells tested. Previous work, however, demonstrated that US6 did not cross the mouse species barrier. We now show that substitution of the cysteine residue at position 108 was responsible for this lack of activity. The HCMV-encoded tapasin inhibitor US3 efficiently downregulated H-2(d) molecules on 3T3 cells, but not in other cell lines tested. Finally, we show that synthetic peptides comprising the functional domain of US6 can be exploited as a versatile TAP inhibitor. In conclusion, a complete overview is presented of the applicability of herpesvirus-encoded TAP and tapasin inhibitors in mouse cells of different genetic background.
疱疹病毒通过特异性干扰 MHC I(主要组织相容性复合体 I)分子的抗原呈递功能来逃避细胞毒性 T 淋巴细胞的清除。抗原加工相关转运蛋白(TAP)在 MHC I 抗原呈递途径中形成一个瓶颈。事实上,许多病毒,特别是疱疹病毒,编码分子来阻断 TAP 功能,这就是一个很好的例子。这些病毒免疫逃逸蛋白的作用通常是强大而非常特异的,这使得这些蛋白质成为研究抗原呈递的细胞生物学的有价值的工具,包括替代抗原加工途径。然而,还没有描述用于任何小鼠疱疹病毒的专用 TAP 抑制剂。为了允许在小鼠模型中使用源自非小鼠疱疹病毒的免疫逃逸蛋白,我们评估了四种 TAP 抑制剂和一种 tapasin 抑制剂在三种不同的小鼠单倍型 H-2(b)、H-2(d)和 H-2(k)背景下的交叉种属活性。四种 TAP 抑制剂中的两种,牛疱疹病毒 1 编码的 UL49.5 和人巨细胞病毒 (HCMV) 编码的 US6 蛋白,强烈抑制小鼠 TAP。单纯疱疹病毒 1 和 Epstein-Barr 病毒分别编码的 ICP47 和 BNLF2a 在所有测试的小鼠细胞中均未能抑制 TAP。然而,之前的工作表明 US6 不能跨越小鼠种属屏障。我们现在表明,位置 108 的半胱氨酸残基的取代是导致这种缺乏活性的原因。HCMV 编码的 tapasin 抑制剂 US3 有效地下调了 3T3 细胞上的 H-2(d)分子,但在其他测试的细胞系中没有。最后,我们表明包含 US6 功能域的合成肽可被用作多功能 TAP 抑制剂。总之,本文全面介绍了疱疹病毒编码的 TAP 和 tapasin 抑制剂在不同遗传背景的小鼠细胞中的适用性。