Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA.
IEEE Trans Med Imaging. 2011 Feb;30(2):523-33. doi: 10.1109/TMI.2010.2089383.
Automated detection of lesions in retinal images is a crucial step towards efficient early detection, or screening, of large at-risk populations. In particular, the detection of microaneurysms, usually the first sign of diabetic retinopathy (DR), and the detection of drusen, the hallmark of age-related macular degeneration (AMD), are of primary importance. In spite of substantial progress made, detection algorithms still produce 1) false positives-target lesions are mixed up with other normal or abnormal structures in the eye, and 2) false negatives-the large variability in the appearance of the lesions causes a subset of these target lesions to be missed. We propose a general framework for detecting and characterizing target lesions almost instantaneously. This framework relies on a feature space automatically derived from a set of reference image samples representing target lesions, including atypical target lesions, and those eye structures that are similar looking but are not target lesions. The reference image samples are obtained either from an expert- or a data-driven approach. Factor analysis is used to derive the filters generating this feature space from reference samples. Previously unseen image samples are then classified in this feature space. We tested this approach by training it to detect microaneurysms. On a set of images from 2739 patients including 67 with referable DR, DR detection area under the receiver-operating characteristic curve (AUC) was comparable (AUC=0.927) to our previously published red lesion detection algorithm (AUC=0.929). We also tested the approach on the detection of AMD, by training it to differentiate drusen from Stargardt's disease lesions, and achieved an AUC=0.850 on a set of 300 manually detected drusen and 300 manually detected flecks. The entire image processing sequence takes less than a second on a standard PC compared to minutes in our previous approach, allowing instantaneous detection. Free-response receiver-operating characteristic analysis showed the superiority of this approach over a framework where false positives and the atypical lesions are not explicitly modeled. A greater performance was achieved by the expert-driven approach for DR detection, where the designer had sound expert knowledge. However, for both problems, a comparable performance was obtained for both expert- and data-driven approaches. This indicates that annotation of a limited number of lesions suffices for building a detection system for any type of lesion in retinal images, if no expert-knowledge is available. We are studying whether the optimal filter framework also generalizes to the detection of any structure in other domains.
视网膜图像中的病变自动检测是实现高效早期检测(或筛查)的关键步骤,尤其是对糖尿病视网膜病变(DR)的早期检测。微动脉瘤的检测通常是 DR 的第一个迹象,而 drusen 的检测则是年龄相关性黄斑变性(AMD)的标志。尽管取得了很大的进展,但是检测算法仍然会产生 1)假阳性-目标病变与眼睛中的其他正常或异常结构混合在一起,以及 2)假阴性-病变的外观存在很大的差异,导致一部分目标病变被遗漏。我们提出了一种用于几乎即时检测和特征描述目标病变的通用框架。该框架依赖于一个特征空间,该空间是自动从一组代表目标病变的参考图像样本中提取的,包括非典型目标病变和外观相似但不是目标病变的眼部结构。参考图像样本是通过专家或数据驱动的方法获得的。使用因子分析从参考样本中提取生成该特征空间的滤波器。然后,将以前未见过的图像样本在这个特征空间中进行分类。我们通过训练该方法来检测微动脉瘤来测试这种方法。在包括 67 名可参考 DR 患者的 2739 名患者的一组图像上,检测到的 DR 接收者操作特征曲线下的面积(AUC)与我们之前发表的红色病变检测算法(AUC=0.929)相当(AUC=0.927)。我们还通过训练该方法来区分 drusen 和 Stargardt 病病变,来测试该方法在 AMD 检测中的应用,在一组 300 个手动检测到的 drusen 和 300 个手动检测到的 flecks 上,获得了 AUC=0.850。与我们之前的方法相比,该标准 PC 上的整个图像处理序列不到一秒,实现了即时检测。自由响应接受者操作特征分析表明,与不明确建模假阳性和非典型病变的框架相比,该方法具有优越性。在 DR 检测中,专家驱动的方法表现更好,因为设计者具有可靠的专业知识。然而,对于这两个问题,无论是专家驱动还是数据驱动的方法,都可以获得相当的性能。这表明,如果没有专家知识,对有限数量的病变进行注释就足以构建视网膜图像中任何类型病变的检测系统。我们正在研究最佳滤波器框架是否也可以推广到其他领域的任何结构的检测。