Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, Audie L. Murphy Memorial Veterans Hospital Division, San Antonio, Texas, USA.
J Appl Physiol (1985). 2011 May;110(5):1406-13. doi: 10.1152/japplphysiol.00702.2010. Epub 2011 Feb 3.
We hypothesized that nitric oxide activation of soluble guanylyl cyclase (sGC) participates in cutaneous vasodilation during whole body heat stress and local skin warming. We examined the effects of the sGC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), on reflex skin blood flow responses to whole body heat stress and on nonreflex responses to increased local skin temperature. Blood flow was monitored by laser-Doppler flowmetry, and blood pressure by Finapres to calculate cutaneous vascular conductance (CVC). Intradermal microdialysis was used to treat one site with 1 mM ODQ in 2% DMSO and Ringer, a second site with 2% DMSO in Ringer, and a third site received Ringer. In protocol 1, after a period of normothermia, whole body heat stress was induced. In protocol 2, local heating units warmed local skin temperature from 34 to 41°C to cause local vasodilation. In protocol 1, in normothermia, CVC did not differ among sites [ODQ, 15 ± 3% maximum CVC (CVC(max)); DMSO, 14 ± 3% CVC(max); Ringer, 17 ± 6% CVC(max); P > 0.05]. During heat stress, ODQ attenuated CVC increases (ODQ, 54 ± 4% CVC(max); DMSO, 64 ± 4% CVC(max); Ringer, 63 ± 4% CVC(max); P < 0.05, ODQ vs. DMSO or Ringer). In protocol 2, at 34°C local temperature, CVC did not differ among sites (ODQ, 17 ± 2% CVC(max); DMSO, 18 ± 4% CVC(max); Ringer, 18 ± 3% CVC(max); P > 0.05). ODQ attenuated CVC increases at 41°C local temperature (ODQ, 54 ± 5% CVC(max); DMSO, 86 ± 4% CVC(max); Ringer, 90 ± 2% CVC(max); P < 0.05 ODQ vs. DMSO or Ringer). sGC participates in neurogenic active vasodilation during heat stress and in the local response to direct skin warming.
我们假设一氧化氮激活可溶性鸟苷酸环化酶(sGC)参与全身热应激和局部皮肤升温期间的皮肤血管舒张。我们研究了 sGC 抑制剂 1H-[1,2,4]恶二唑[4,3-a]喹喔啉-1-酮(ODQ)对全身热应激反射性皮肤血流反应和局部皮肤温度升高的非反射性反应的影响。血流通过激光多普勒流量测定法监测,血压通过 Finapres 计算皮肤血管传导率(CVC)。使用皮内微透析在一个部位用 1 mM ODQ 加 2% DMSO 和林格氏液处理,在第二个部位用 2% DMSO 加林格氏液处理,第三个部位用林格氏液处理。在方案 1 中,在正常体温期间,诱导全身热应激。在方案 2 中,局部加热单元将局部皮肤温度从 34°C 升高到 41°C 以引起局部血管舒张。在方案 1 中,在正常体温下,三个部位的 CVC 没有差异[ODQ,15±3%最大 CVC(CVC(max));DMSO,14±3% CVC(max);林格氏液,17±6% CVC(max);P>0.05]。在热应激期间,ODQ 减弱了 CVC 的增加(ODQ,54±4% CVC(max);DMSO,64±4% CVC(max);林格氏液,63±4% CVC(max);P<0.05,ODQ 与 DMSO 或林格氏液相比)。在方案 2 中,在 34°C 局部温度下,三个部位的 CVC 没有差异(ODQ,17±2% CVC(max);DMSO,18±4% CVC(max);林格氏液,18±3% CVC(max);P>0.05)。ODQ 减弱了 41°C 局部温度时的 CVC 增加(ODQ,54±5% CVC(max);DMSO,86±4% CVC(max);林格氏液,90±2% CVC(max);P<0.05,ODQ 与 DMSO 或林格氏液相比)。sGC 参与热应激期间的神经源性主动血管舒张和直接皮肤升温的局部反应。