Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States.
Biochemistry. 2011 Mar 29;50(12):2170-86. doi: 10.1021/bi101935x. Epub 2011 Feb 16.
Arabidopsis CRINKLY4 (ACR4) is a receptor-like kinase (RLK) that consists of an extracellular domain and an intracellular domain (ICD) with serine/threonine kinase activity. While genetic and cell biology experiments have demonstrated that ACR4 is important in cell fate specification and overall development of the plant, little is known about the biochemical properties of the kinase domain and the mechanisms that underlie the overall function of the receptor. To complement in planta studies of the function of ACR4, we have expressed the ICD in Escherichia coli as a soluble C-terminal fusion to the N-utilization substance A (NusA) protein, purified the recombinant protein, and characterized the enzymatic and conformational properties. The protein autophosphorylates via an intramolecular mechanism, prefers Mn(2+) over Mg(2+) as the divalent cation, and displays typical Michaelis-Menten kinetics with respect to ATP with an apparent K(m) of 6.67 ± 2.07 μM and a V(max) of 1.83 ± 0.18 nmol min(-1) mg(-1). Autophosphorylation is accompanied by a conformational change as demonstrated by circular dichroism, fluorescence spectroscopy, and limited proteolysis with trypsin. Analysis by nanoliquid chromatography and mass spectrometry revealed 16 confirmed sites of phosphorylation at Ser and Thr residues. Sedimentation velocity and gel filtration experiments indicate that the ICD has a propensity to oligomerize and that this property is lost upon autophosphorylation.
拟南芥卷曲 4 蛋白(ACR4)是一种受体样激酶(RLK),由细胞外结构域和具有丝氨酸/苏氨酸激酶活性的细胞内结构域(ICD)组成。虽然遗传和细胞生物学实验表明 ACR4 对细胞命运特化和植物的整体发育很重要,但对于激酶结构域的生化特性以及受体整体功能的基础机制知之甚少。为了补充 ACR4 功能的体内研究,我们将 ICD 作为 N-利用物质 A(NusA)蛋白的可溶性 C 端融合物在大肠杆菌中表达,纯化了重组蛋白,并对其酶学和构象特性进行了表征。该蛋白通过分子内机制进行自身磷酸化,优先选择 Mn(2+)而不是 Mg(2+)作为二价阳离子,并表现出典型的米氏动力学,对 ATP 的表观 K(m)为 6.67 ± 2.07 μM,V(max)为 1.83 ± 0.18 nmol min(-1) mg(-1)。如圆二色性、荧光光谱和胰蛋白酶有限水解所证明的那样,自身磷酸化伴随着构象变化。通过纳米液相色谱和质谱分析发现了 16 个在丝氨酸和苏氨酸残基上被磷酸化的确认位点。沉降速度和凝胶过滤实验表明,ICD 有倾向于寡聚化的特性,而这种特性在自身磷酸化后丧失。