Suppr超能文献

在各种线虫肠道区室中检测到的蛋白质的功能和系统发育特征

Functional and phylogenetic characterization of proteins detected in various nematode intestinal compartments.

作者信息

Rosa Bruce A, Townsend Reid, Jasmer Douglas P, Mitreva Makedonka

机构信息

From the ‡The Genome Institute, Washington University in St Louis, Missouri 63108;

§Department of Cell Biology & Physiology and Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63108;

出版信息

Mol Cell Proteomics. 2015 Apr;14(4):812-27. doi: 10.1074/mcp.M114.046227. Epub 2015 Jan 21.

Abstract

The parasitic nematode intestine is responsible for nutrient digestion and absorption, and many other processes essential for reproduction and survival, making it a valuable target for anthelmintic drug treatment. However, nematodes display extreme biological diversity (including occupying distinct trophic habitats), resulting in limited knowledge of intestinal cell/protein functions of fundamental or adaptive significance. We developed a perfusion model for isolating intestinal proteins in Ascaris suum (a parasite of humans and swine), allowing for the identification of over 1000 intestinal A. suum proteins (using mass spectrometry), which were assigned to several different intestinal cell compartments (intestinal tissue, the integral and peripheral intestinal membranes, and the intestinal lumen). A multi-omics analysis approach identified a large diversity of biological functions across intestinal compartments, based on both functional enrichment analysis (identifying terms related to detoxification, proteolysis, and host-parasite interactions) and regulatory binding sequence analysis to identify putatively active compartment-specific transcription factors (identifying many related to intestinal sex differentiation or lifespan regulation). Orthologs of A. suum proteins in 15 other nematodes species, five host species, and two outgroups were identified and analyzed. Different cellular compartments demonstrated markedly different levels of protein conservation; e.g. integral intestinal membrane proteins were the most conserved among nematodes (up to 96% conservation), whereas intestinal lumen proteins were the most diverse (only 6% conservation across all nematodes, and 71% with no host orthologs). Finally, this integrated multi-omics analysis identified conserved nematode-specific intestinal proteins likely performing essential functions (including V-type ATPases and ABC transporters), which may serve as promising anthelmintic drug or vaccine targets in future research. Collectively, the findings provide valuable new insights on conserved and adaptive features of nematode intestinal cells, membranes and the intestinal lumen, and potential targets for parasite treatment and control.

摘要

寄生线虫的肠道负责营养物质的消化和吸收,以及许多其他对繁殖和生存至关重要的过程,使其成为驱虫药物治疗的重要靶点。然而,线虫表现出极端的生物多样性(包括占据不同的营养栖息地),导致对具有基本或适应性意义的肠道细胞/蛋白质功能的了解有限。我们开发了一种灌注模型,用于分离猪蛔虫(一种人和猪的寄生虫)的肠道蛋白质,通过质谱鉴定出1000多种猪蛔虫肠道蛋白质,这些蛋白质被分配到几个不同的肠道细胞区室(肠道组织、完整和外周肠膜以及肠腔)。一种多组学分析方法基于功能富集分析(识别与解毒、蛋白水解和宿主-寄生虫相互作用相关的术语)和调控结合序列分析来识别假定活跃的区室特异性转录因子(识别许多与肠道性别分化或寿命调节相关的因子),确定了肠道各区间生物功能的巨大多样性。鉴定并分析了15种其他线虫物种、5种宿主物种和2个外群中猪蛔虫蛋白质的直系同源物。不同的细胞区室显示出明显不同的蛋白质保守水平;例如,肠膜整合蛋白在线虫中最保守(高达96%的保守性),而肠腔蛋白则最多样化(所有线虫中只有6%的保守性,71%没有宿主直系同源物)。最后,这种综合的多组学分析确定了可能执行基本功能的保守线虫特异性肠道蛋白质(包括V型ATP酶和ABC转运蛋白),这些蛋白质可能在未来研究中作为有前景的驱虫药物或疫苗靶点。总的来说,这些发现为线虫肠道细胞、膜和肠腔的保守和适应性特征以及寄生虫治疗和控制的潜在靶点提供了有价值的新见解。

相似文献

1
Functional and phylogenetic characterization of proteins detected in various nematode intestinal compartments.
Mol Cell Proteomics. 2015 Apr;14(4):812-27. doi: 10.1074/mcp.M114.046227. Epub 2015 Jan 21.
3
Genome-wide tissue-specific gene expression, co-expression and regulation of co-expressed genes in adult nematode Ascaris suum.
PLoS Negl Trop Dis. 2014 Feb 6;8(2):e2678. doi: 10.1371/journal.pntd.0002678. eCollection 2014 Feb.
4
Compartmentalization of functions and predicted miRNA regulation among contiguous regions of the nematode intestine.
RNA Biol. 2017 Oct 3;14(10):1335-1352. doi: 10.1080/15476286.2016.1166333. Epub 2016 Mar 22.
5
Lectin-Mediated Bacterial Modulation by the Intestinal Nematode .
Int J Mol Sci. 2021 Aug 14;22(16):8739. doi: 10.3390/ijms22168739.
6
Proteomic analysis of adult Ascaris suum fluid compartments and secretory products.
PLoS Negl Trop Dis. 2014 Jun 5;8(6):e2939. doi: 10.1371/journal.pntd.0002939. eCollection 2014 Jun.
7
The Intestinal Roundworm Releases Antimicrobial Factors Which Interfere With Bacterial Growth and Biofilm Formation.
Front Cell Infect Microbiol. 2018 Aug 7;8:271. doi: 10.3389/fcimb.2018.00271. eCollection 2018.
8
Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets With Broad Potential.
EBioMedicine. 2015 Jul 29;2(9):1079-89. doi: 10.1016/j.ebiom.2015.07.030. eCollection 2015 Sep.
9
Peptidases compartmentalized to the Ascaris suum intestinal lumen and apical intestinal membrane.
PLoS Negl Trop Dis. 2015 Jan 8;9(1):e3375. doi: 10.1371/journal.pntd.0003375. eCollection 2015 Jan.
10
Direct experimental manipulation of intestinal cells in Ascaris suum, with minor influences on the global transcriptome.
Int J Parasitol. 2017 Apr;47(5):271-279. doi: 10.1016/j.ijpara.2016.12.005. Epub 2017 Feb 20.

引用本文的文献

1
Identification of broadly-conserved parasitic nematode proteins that activate immunity.
Front Parasitol. 2023 Aug 8;2:1223942. doi: 10.3389/fpara.2023.1223942. eCollection 2023.
2
Intestinal cell diversity and treatment responses in a parasitic nematode at single cell resolution.
BMC Genomics. 2024 Apr 4;25(1):341. doi: 10.1186/s12864-024-10203-7.
3
Getting around the roundworms: Identifying knowledge gaps and research priorities for the ascarids.
Adv Parasitol. 2024;123:51-123. doi: 10.1016/bs.apar.2023.12.002. Epub 2024 Feb 20.
4
Non-coding RNA in the gut of the blood-feeding parasitic worm, Haemonchus contortus.
Vet Res. 2024 Jan 3;55(1):1. doi: 10.1186/s13567-023-01254-x.
5
Diethylcarbamazine, TRP channels and Ca signaling in cells of the Ascaris intestine.
Sci Rep. 2022 Dec 9;12(1):21317. doi: 10.1038/s41598-022-25648-7.
6
Genomics of the Parasitic Nematode and Its Relatives.
Genes (Basel). 2021 Mar 28;12(4):493. doi: 10.3390/genes12040493.
7
Rapid determination of nematode cell and organ susceptibility to toxic treatments.
Int J Parasitol Drugs Drug Resist. 2020 Dec;14:167-182. doi: 10.1016/j.ijpddr.2020.10.007. Epub 2020 Oct 20.
8
Cholinergic receptors on intestine cells of Ascaris suum and activation of nAChRs by levamisole.
Int J Parasitol Drugs Drug Resist. 2020 Aug;13:38-50. doi: 10.1016/j.ijpddr.2020.04.002. Epub 2020 Apr 25.
9
De novo identification of toxicants that cause irreparable damage to parasitic nematode intestinal cells.
PLoS Negl Trop Dis. 2020 May 26;14(5):e0007942. doi: 10.1371/journal.pntd.0007942. eCollection 2020 May.
10
Omics Driven Understanding of the Intestines of Parasitic Nematodes.
Front Genet. 2019 Jul 25;10:652. doi: 10.3389/fgene.2019.00652. eCollection 2019.

本文引用的文献

1
Regulatory analysis of the C. elegans genome with spatiotemporal resolution.
Nature. 2014 Aug 28;512(7515):400-5. doi: 10.1038/nature13497.
2
BLMP-1/Blimp-1 regulates the spatiotemporal cell migration pattern in C. elegans.
PLoS Genet. 2014 Jun 26;10(6):e1004428. doi: 10.1371/journal.pgen.1004428. eCollection 2014 Jun.
3
Proteomic analysis of adult Ascaris suum fluid compartments and secretory products.
PLoS Negl Trop Dis. 2014 Jun 5;8(6):e2939. doi: 10.1371/journal.pntd.0002939. eCollection 2014 Jun.
4
Genome-wide tissue-specific gene expression, co-expression and regulation of co-expressed genes in adult nematode Ascaris suum.
PLoS Negl Trop Dis. 2014 Feb 6;8(2):e2678. doi: 10.1371/journal.pntd.0002678. eCollection 2014 Feb.
5
InterProScan 5: genome-scale protein function classification.
Bioinformatics. 2014 May 1;30(9):1236-40. doi: 10.1093/bioinformatics/btu031. Epub 2014 Jan 21.
6
Genome of the human hookworm Necator americanus.
Nat Genet. 2014 Mar;46(3):261-269. doi: 10.1038/ng.2875. Epub 2014 Jan 19.
7
Cofactor-independent phosphoglycerate mutase from nematodes has limited druggability, as revealed by two high-throughput screens.
PLoS Negl Trop Dis. 2014 Jan 9;8(1):e2628. doi: 10.1371/journal.pntd.0002628. eCollection 2014.
8
The transporter classification database.
Nucleic Acids Res. 2014 Jan;42(Database issue):D251-8. doi: 10.1093/nar/gkt1097. Epub 2013 Nov 12.
9
WormBase 2014: new views of curated biology.
Nucleic Acids Res. 2014 Jan;42(Database issue):D789-93. doi: 10.1093/nar/gkt1063. Epub 2013 Nov 4.
10
Haemonchus contortus as a paradigm and model to study anthelmintic drug resistance.
Parasitology. 2013 Oct;140(12):1506-22. doi: 10.1017/S0031182013001145.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验