Suppr超能文献

裂殖酵母锰超氧化物歧化酶的线粒体定位对于其赖氨酸乙酰化以及细胞应激抗性和呼吸生长是必需的。

Mitochondrial localization of fission yeast manganese superoxide dismutase is required for its lysine acetylation and for cellular stress resistance and respiratory growth.

机构信息

Chemical Genetics Laboratory/Chemical Genomics Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan.

出版信息

Biochem Biophys Res Commun. 2011 Mar 4;406(1):42-6. doi: 10.1016/j.bbrc.2011.01.103. Epub 2011 Feb 2.

Abstract

Manganese-dependent superoxide dismutase (MnSOD) is localized in the mitochondria and is important for oxidative stress resistance. Although transcriptional regulation of MnSOD has been relatively well studied, much less is known about the protein's posttranslational regulation. In budding yeast, MnSOD is activated after mitochondrial import by manganese ion incorporation. Here we characterize posttranslational modification of MnSOD in the fission yeast Schizosaccharomyces pombe. Fission yeast MnSOD is acetylated at the 25th lysine residue. This acetylation was diminished by deletion of N-terminal mitochondrial targeting sequence, suggesting that MnSOD is acetylated after import into mitochondria. Mitochondrial localization of MnSOD is not essential for the enzyme activity, but is crucial for oxidative stress resistance and growth under respiratory conditions of fission yeast. These results suggest that, unlike the situation in budding yeast, S. pombe MnSOD is already active even before mitochondrial localization; nonetheless, mitochondrial localization is critical to allow the cell to cope with reactive oxygen species generated inside or outside of mitochondria.

摘要

锰依赖型超氧化物歧化酶(MnSOD)定位于线粒体中,对于抵抗氧化应激非常重要。尽管 MnSOD 的转录调控已经得到了相对较好的研究,但对其翻译后调控知之甚少。在芽殖酵母中,MnSOD 在通过锰离子掺入进行线粒体导入后被激活。在这里,我们描述了裂殖酵母 Schizosaccharomyces pombe 中 MnSOD 的翻译后修饰。裂殖酵母 MnSOD 在第 25 个赖氨酸残基处被乙酰化。通过删除线粒体靶向序列的 N 端,这种乙酰化减少了,这表明 MnSOD 在导入线粒体后被乙酰化。MnSOD 的线粒体定位对于酶活性不是必需的,但对于裂殖酵母的呼吸条件下的氧化应激抵抗和生长至关重要。这些结果表明,与芽殖酵母的情况不同,即使在 MnSOD 定位于线粒体之前,S. pombe MnSOD 已经具有活性;然而,线粒体定位对于允许细胞应对线粒体内外产生的活性氧至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验