Suppr超能文献

女性大鼠控尿的神经学和其他因素的定量分析。

Quantification of neurological and other contributors to continence in female rats.

机构信息

Biomedical Engineering Dept, Cleveland Clinic, Cleveland, OH 44195, USA; Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA.

出版信息

Brain Res. 2011 Mar 25;1382:198-205. doi: 10.1016/j.brainres.2011.01.094. Epub 2011 Feb 2.

Abstract

Smooth muscle, striated muscle, their central and peripheral innervations and control, and mucosal coaptation contribute to maintenance of continence. We used manual leak point pressure (mLPP) testing and electrical stimulation LPP (eLPP) testing in female rats to quantify the contribution of these factors to urethral resistance, a measure of continence. Abdominal muscles were electrically stimulated to induce leakage for eLPP. A Crede maneuver was applied for mLPP. These were repeated after complete T8 spinal cord injury (SCI) and/or bilateral pudendal nerve transection (PNT). After euthanasia, mLPP was repeated. MLPP was not significantly affected by opening the abdomen, suggesting that intra-abdominal pressure transmission contributes little to continence during slow pressure changes. ELPP was significantly higher than mLPP in intact rats, after PNT, and after SCI+PNT, suggesting that abdominal pressure transmission contributes to continence during rapid increases in intra-abdominal pressure. MLPP decreased significantly after PNT, indicating that urethral striated muscles contribute significantly to continence. ELPP decreased significantly after PNT with and without SCI, suggesting that supraspinal control significantly affects continence during rapid pressure changes, but not during slow pressure changes. MLPP after euthanasia was significantly decreased compared to mLPP after SCI+PNT, suggesting that urethral mucosal seal coaptation and tissue elasticity also contribute to continence. The urethra is a complex organ that maintains continence via a highly organized and hierarchical system involving both the central and peripheral nervous systems.

摘要

平滑肌、横纹肌,其中枢和外周神经支配和控制,以及黏膜吻合,有助于维持尿控。我们使用手动漏点压(mLPP)测试和电刺激漏点压(eLPP)测试在雌性大鼠中,量化这些因素对尿道阻力的贡献,这是尿控的一个衡量标准。腹部肌肉接受电刺激以引发 eLPP 漏尿。Crede 手法用于 mLPP。这些在完全 T8 脊髓损伤(SCI)和/或双侧阴部神经切断(PNT)后重复进行。安乐死后,重复 mLPP。腹部开放对 mLPP 没有明显影响,这表明在缓慢压力变化期间,腹内压力传递对尿控的贡献较小。ELPP 在完整大鼠、PNT 后和 SCI+PNT 后明显高于 mLPP,这表明腹内压力的快速增加有助于尿控。PNT 后 MLPP 显著降低,表明尿道横纹肌对尿控有重要贡献。PNT 后,无论是否存在 SCI,ELPP 均显著降低,这表明中枢神经系统控制对快速压力变化期间的尿控有显著影响,但对缓慢压力变化期间的尿控没有影响。安乐死后的 MLPP 明显低于 SCI+PNT 后的 mLPP,这表明尿道黏膜吻合和组织弹性也有助于尿控。尿道是一个复杂的器官,通过涉及中枢和外周神经系统的高度组织化和分层系统来维持尿控。

相似文献

1
Quantification of neurological and other contributors to continence in female rats.
Brain Res. 2011 Mar 25;1382:198-205. doi: 10.1016/j.brainres.2011.01.094. Epub 2011 Feb 2.
2
Urethral compensatory mechanisms to maintain urinary continence after pudendal nerve injury in female rats.
Int Urogynecol J. 2011 Aug;22(8):963-70. doi: 10.1007/s00192-011-1403-6. Epub 2011 Mar 29.
3
Strain-dependent urethral response.
Neurourol Urodyn. 2011 Nov;30(8):1652-8. doi: 10.1002/nau.21158. Epub 2011 Aug 8.
4
The role of bladder-to-urethral reflexes in urinary continence mechanisms in rats.
Am J Physiol Renal Physiol. 2004 Sep;287(3):F434-41. doi: 10.1152/ajprenal.00038.2004. Epub 2004 Apr 27.
5
Urethral closure mechanisms under sneeze-induced stress condition in rats: a new animal model for evaluation of stress urinary incontinence.
Am J Physiol Regul Integr Comp Physiol. 2003 Aug;285(2):R356-65. doi: 10.1152/ajpregu.00010.2003. Epub 2003 May 15.
6
Pelvic floor muscles and the external urethral sphincter have different responses to applied bladder pressure during continence.
Urology. 2010 Jun;75(6):1515.e1-7. doi: 10.1016/j.urology.2009.11.065. Epub 2010 Mar 5.
7
Somatomotor and sensory urethral control of micturition in female rats.
Am J Physiol Renal Physiol. 2014 Dec 1;307(11):F1207-14. doi: 10.1152/ajprenal.00255.2014. Epub 2014 Oct 22.
8
Pudendal denervation affects the structure and function of the striated, urethral sphincter in female rats.
Int Urogynecol J Pelvic Floor Dysfunct. 1998;9(2):88-93. doi: 10.1007/BF01982215.
9
Analysis of continence reflexes by dynamic urethral pressure recordings in a rat stress urinary incontinence model induced by multiple simulated birth traumas.
Am J Physiol Renal Physiol. 2019 Oct 1;317(4):F781-F788. doi: 10.1152/ajprenal.00197.2019. Epub 2019 Jul 17.
10
Genitourinary dysfunction in male rats after bilateral neurectomy of the motor branch of the sacral plexus.
Neurourol Urodyn. 2012 Nov;31(8):1288-93. doi: 10.1002/nau.22242. Epub 2012 Mar 23.

引用本文的文献

4
Transurethral versus suprapubic catheterization to test urethral function in rats.
Sci Rep. 2021 Jul 13;11(1):14369. doi: 10.1038/s41598-021-93772-x.
5
Development of Male External Urethral Sphincter and Tissue-Resident Stem/Progenitor Cells in Rats.
Stem Cells Dev. 2020 Feb 1;29(3):133-143. doi: 10.1089/scd.2019.0241. Epub 2020 Jan 6.
6
Multiple doses of stem cells maintain urethral function in a model of neuromuscular injury resulting in stress urinary incontinence.
Am J Physiol Renal Physiol. 2019 Oct 1;317(4):F1047-F1057. doi: 10.1152/ajprenal.00173.2019. Epub 2019 Aug 14.
7
Electrical stimulation of the pudendal nerve promotes neuroregeneration and functional recovery from stress urinary incontinence in a rat model.
Am J Physiol Renal Physiol. 2018 Dec 1;315(6):F1555-F1564. doi: 10.1152/ajprenal.00431.2017. Epub 2018 Aug 22.
8
Neuroanatomic and behavioral correlates of urinary dysfunction induced by vaginal distension in rats.
Am J Physiol Renal Physiol. 2016 May 1;310(10):F1065-73. doi: 10.1152/ajprenal.00417.2015. Epub 2016 Mar 2.
10
Somatomotor and sensory urethral control of micturition in female rats.
Am J Physiol Renal Physiol. 2014 Dec 1;307(11):F1207-14. doi: 10.1152/ajprenal.00255.2014. Epub 2014 Oct 22.

本文引用的文献

1
Characterization of a spinal, urine storage reflex, inhibitory center and its regulation by 5-HT1A receptors in female cats.
Am J Physiol Regul Integr Comp Physiol. 2010 May;298(5):R1198-208. doi: 10.1152/ajpregu.00599.2009. Epub 2010 Feb 17.
2
Neural control of the lower urinary tract: peripheral and spinal mechanisms.
Neurourol Urodyn. 2010;29(1):128-39. doi: 10.1002/nau.20837.
4
Stress urinary incontinence: relative importance of urethral support and urethral closure pressure.
J Urol. 2008 Jun;179(6):2286-90; discussion 2290. doi: 10.1016/j.juro.2008.01.098. Epub 2008 Apr 18.
5
Animal models of female stress urinary incontinence.
J Urol. 2008 Jun;179(6):2103-10. doi: 10.1016/j.juro.2008.01.096. Epub 2008 Apr 18.
6
7
Burch colposuspension versus fascial sling to reduce urinary stress incontinence.
N Engl J Med. 2007 May 24;356(21):2143-55. doi: 10.1056/NEJMoa070416. Epub 2007 May 21.
8
Functional anatomy of the female pelvic floor.
Ann N Y Acad Sci. 2007 Apr;1101:266-96. doi: 10.1196/annals.1389.034. Epub 2007 Apr 7.
9
Treatment options for patients with suboptimal response to surgery for stress urinary incontinence.
Curr Med Res Opin. 2007 Feb;23(2):285-92. doi: 10.1185/030079906X162845.
10
Treatment options for stress urinary incontinence.
Rev Urol. 2004;6 Suppl 3(Suppl 3):S29-47.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验