Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
Vet Microbiol. 2011 May 12;150(1-2):146-51. doi: 10.1016/j.vetmic.2010.12.025. Epub 2011 Jan 11.
Yersinia pestis inoculated subcutaneously via fleabite or experimental injection in natural rodent hosts multiply initially in macrophage phagolysosomes. Survival and multiplication of Y. pestis in this acidic low [Ca(2+)] and [Mg(2+)] environment likely necessitates compensatory mechanisms involving expression of specific proteins compared to those expressed during extracellular growth. A proteomics approach was used to identify these proteins using mouse macrophage RAW264.7 cells infected with Y. pestis strain KIM6-2053.1+ for 8h. Intracellular Y. pestis protein samples were prepared by detergent lysis of infected RAW264.7 cells, isolation of intracellular Y. pestis by differential centrifugation, and sonication of isolated Y. pestis. Protein samples were similarly prepared from Y. pestis grown extracellularly in tissue culture media. Two intracellular and extracellular Y. pestis protein samples were analyzed by two-dimensional polyacrylamide gel electrophoresis and compared in silico identifying 12 protein spots present in both intracellular samples but absent in extracellularly grown Y. pestis. Mass spectrometry analysis of these identified nine proteins at a high level of confidence in the Y. pestis genome: superoxide dismutase-A (sodA), inorganic pyrophosphatase, autonomous glycyl radical cofactor GrcA, molecular chaperone DnaK, serine endoprotease GsrA, global DNA-binding transcriptional dual regulator H-NS, urease subunit gamma UreA, and tellurite resistance proteins TerD and TerE. These results support the involvement of various general stress response regulators of Y. pestis during the intracellular parasitism of host macrophages as well as identification of UreA, TerD and TerE with as yet unknown roles in the process of intracellular survival of Y. pestis.
鼠疫耶尔森菌通过跳蚤叮咬或实验性注射接种到自然宿主的啮齿动物皮下,最初在巨噬细胞吞噬溶酶体中繁殖。与在细胞外生长期间表达的蛋白相比,在这种酸性低 [Ca(2+)] 和 [Mg(2+)] 环境中,鼠疫耶尔森菌的存活和繁殖可能需要涉及特定蛋白表达的补偿机制。使用感染了鼠疫耶尔森菌 KIM6-2053.1+株的小鼠巨噬细胞 RAW264.7 细胞,采用蛋白质组学方法来鉴定这些蛋白。将感染的 RAW264.7 细胞用去污剂裂解,通过差速离心分离细胞内鼠疫耶尔森菌,然后对分离的鼠疫耶尔森菌进行超声处理,从而制备细胞内鼠疫耶尔森菌蛋白样品。同样从组织培养介质中培养的细胞外鼠疫耶尔森菌制备蛋白样品。通过二维聚丙烯酰胺凝胶电泳分析两种细胞内和细胞外鼠疫耶尔森菌蛋白样品,并通过计算机比较鉴定出存在于两种细胞内样品中但不存在于细胞外生长的鼠疫耶尔森菌中的 12 个蛋白斑点。对这些鉴定出的蛋白斑点进行质谱分析,在鼠疫耶尔森菌基因组中高度确信地鉴定出 9 种蛋白:超氧化物歧化酶-A (sodA)、无机焦磷酸酶、自主甘氨酰基自由基辅因子 GrcA、分子伴侣 DnaK、丝氨酸内切蛋白酶 GsrA、全局 DNA 结合转录双重调节因子 H-NS、脲酶亚基γ UreA 以及碲酸盐抗性蛋白 TerD 和 TerE。这些结果支持了鼠疫耶尔森菌在宿主巨噬细胞内寄生期间各种一般应激反应调节剂的参与,以及鉴定出 UreA、TerD 和 TerE 在鼠疫耶尔森菌细胞内存活过程中具有未知作用。