Suppr超能文献

Siamois 和 Twin 在 Spemann 组织者的形成中是多余和必需的。

Siamois and Twin are redundant and essential in formation of the Spemann organizer.

机构信息

Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 1110 Biomedical Research Building 2/3, 421 Curie Boulevard, Philadelphia, PA 19104-6058, USA.

出版信息

Dev Biol. 2011 Apr 15;352(2):367-81. doi: 10.1016/j.ydbio.2011.01.034. Epub 2011 Feb 3.

Abstract

The Spemann organizer is an essential signaling center in Xenopus germ layer patterning and axis formation. Organizer formation occurs in dorsal blastomeres receiving both maternal Wnt and zygotic Nodal signals. In response to stabilized βcatenin, dorsal blastomeres express the closely related transcriptional activators, Siamois (Sia) and Twin (Twn), members of the paired homeobox family. Sia and Twn induce organizer formation and expression of organizer-specific genes, including Goosecoid (Gsc). In spite of the similarity of Sia and Twn sequence and expression pattern, it is unclear whether these factors function equivalently in promoter binding and subsequent transcriptional activation, or if Sia and Twn are required for all aspects of organizer function. Here we report that Sia and Twn activate Gsc transcription by directly binding to a conserved P3 site within the Wnt-responsive proximal element of the Gsc promoter. Sia and Twn form homodimers and heterodimers by direct homeodomain interaction and dimer forms are indistinguishable in both DNA-binding and activation functions. Sequential chromatin immunoprecipitation reveals that the endogenous Gsc promoter can be occupied by either Sia or Twn homodimers or Sia-Twn heterodimers. Knockdown of Sia and Twn together, but not individually, results in a failure of organizer gene expression and a disruption of axis formation, consistent with a redundant role for Sia and Twn in organizer formation. Furthermore, simultaneous knockdown of Sia and Twn blocks axis induction in response to ectopic Wnt signaling, demonstrating an essential role for Sia and Twn in mediating the transcriptional response to the maternal Wnt pathway. The results demonstrate the functional redundancy of Sia and Twn and their essential role in direct transcriptional responses necessary for Spemann organizer formation.

摘要

Spemann 组织者是爪蟾胚层模式形成和轴形成的重要信号中心。组织者的形成发生在接收母体 Wnt 和合子 Nodal 信号的背侧胚盘中。在稳定的β-catenin 作用下,背侧胚盘表达密切相关的转录激活因子 Siamois(Sia)和 Twin(Twn),它们是配对同源盒家族的成员。Sia 和 Twn 诱导组织者的形成和表达组织者特异性基因,包括 Goosecoid(Gsc)。尽管 Sia 和 Twn 的序列和表达模式相似,但不清楚这些因子在启动子结合和随后的转录激活中是否等效发挥作用,或者 Sia 和 Twn 是否是组织者功能的所有方面所必需的。在这里,我们报告 Sia 和 Twn 通过直接结合 Gsc 启动子 Wnt 反应性近端元件中的保守 P3 位点来激活 Gsc 转录。Sia 和 Twn 通过直接同源域相互作用形成同源二聚体和异源二聚体,并且在 DNA 结合和激活功能方面二聚体形式是不可区分的。连续的染色质免疫沉淀显示,内源性 Gsc 启动子可以被 Sia 或 Twn 同源二聚体或 Sia-Twn 异源二聚体占据。Sia 和 Twn 的同时敲低,而不是单独敲低,导致组织者基因表达失败和轴形成中断,这与 Sia 和 Twn 在组织者形成中的冗余作用一致。此外,Sia 和 Twn 的同时敲低阻断了对异位 Wnt 信号的轴诱导,表明 Sia 和 Twn 在介导对母体 Wnt 途径的转录反应中具有重要作用。这些结果表明了 Sia 和 Twn 的功能冗余性及其在 Spemann 组织者形成所必需的直接转录反应中的重要作用。

相似文献

1
Siamois and Twin are redundant and essential in formation of the Spemann organizer.
Dev Biol. 2011 Apr 15;352(2):367-81. doi: 10.1016/j.ydbio.2011.01.034. Epub 2011 Feb 3.
2
Direct regulation of siamois by VegT is required for axis formation in Xenopus embryo.
Int J Dev Biol. 2015;59(10-12):443-51. doi: 10.1387/ijdb.150040ds.
3
Transcriptional integration of Wnt and Nodal pathways in establishment of the Spemann organizer.
Dev Biol. 2012 Aug 15;368(2):231-41. doi: 10.1016/j.ydbio.2012.05.018. Epub 2012 May 22.
6
XIC is required for Siamois activity and dorsoanterior development.
Mol Cell Biol. 2005 Jun;25(12):5061-72. doi: 10.1128/MCB.25.12.5061-5072.2005.
7
Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in .
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3081-E3090. doi: 10.1073/pnas.1700766114. Epub 2017 Mar 27.
10
Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/β-catenin signaling pathway.
Dev Biol. 2012 Jan 15;361(2):220-31. doi: 10.1016/j.ydbio.2011.10.026. Epub 2011 Oct 26.

引用本文的文献

2
Foxh1/Nodal Defines Context-Specific Direct Maternal Wnt/β-Catenin Target Gene Regulation in Early Development.
iScience. 2020 Jul 24;23(7):101314. doi: 10.1016/j.isci.2020.101314. Epub 2020 Jun 25.
3
Chromatin accessibility and histone acetylation in the regulation of competence in early development.
Dev Biol. 2020 Jun 1;462(1):20-35. doi: 10.1016/j.ydbio.2020.02.013. Epub 2020 Feb 28.
4
TGF-β Family Signaling in Early Vertebrate Development.
Cold Spring Harb Perspect Biol. 2018 Jun 1;10(6):a033274. doi: 10.1101/cshperspect.a033274.
5
Brg1 chromatin remodeling ATPase balances germ layer patterning by amplifying the transcriptional burst at midblastula transition.
PLoS Genet. 2017 May 12;13(5):e1006757. doi: 10.1371/journal.pgen.1006757. eCollection 2017 May.
6
A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs.
Semin Cell Dev Biol. 2017 Jun;66:12-24. doi: 10.1016/j.semcdb.2017.03.003. Epub 2017 Mar 22.
7
Two-headed mutants of the lamprey, a basal vertebrate.
Zoological Lett. 2016 Nov 16;2:22. doi: 10.1186/s40851-016-0058-z. eCollection 2016.
8
Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm.
Genesis. 2016 Jun;54(6):334-49. doi: 10.1002/dvg.22943. Epub 2016 May 3.
9
FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development.
Dev Biol. 2016 Jun 1;414(1):34-44. doi: 10.1016/j.ydbio.2016.04.006. Epub 2016 Apr 13.
10
Molecular specification of germ layers in vertebrate embryos.
Cell Mol Life Sci. 2016 Mar;73(5):923-47. doi: 10.1007/s00018-015-2092-y. Epub 2015 Dec 14.

本文引用的文献

2
The evolutionary significance of ancient genome duplications.
Nat Rev Genet. 2009 Oct;10(10):725-32. doi: 10.1038/nrg2600. Epub 2009 Aug 4.
3
Chromatin immunoprecipitation in early Xenopus laevis embryos.
Dev Dyn. 2009 Jun;238(6):1422-32. doi: 10.1002/dvdy.21931.
4
DNase I footprint analysis of protein-DNA binding.
Curr Protoc Mol Biol. 2001 May;Chapter 12:Unit 12.4. doi: 10.1002/0471142727.mb1204s07.
6
The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning.
EMBO J. 2007 Jun 20;26(12):2955-65. doi: 10.1038/sj.emboj.7601705. Epub 2007 May 24.
7
Wnt11/beta-catenin signaling in both oocytes and early embryos acts through LRP6-mediated regulation of axin.
Development. 2007 Feb;134(3):503-13. doi: 10.1242/dev.02739. Epub 2007 Jan 3.
8
FoxD3 and Grg4 physically interact to repress transcription and induce mesoderm in Xenopus.
J Biol Chem. 2007 Jan 26;282(4):2548-57. doi: 10.1074/jbc.M607412200. Epub 2006 Nov 30.
9
Patterning the early Xenopus embryo.
Development. 2006 Apr;133(7):1205-17. doi: 10.1242/dev.02304.
10
Spemann's organizer and self-regulation in amphibian embryos.
Nat Rev Mol Cell Biol. 2006 Apr;7(4):296-302. doi: 10.1038/nrm1855.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验