Lehrstuhl Mikrobiologie, Fakultät Biologie, Universität Freiburg, Freiburg, Germany.
J Biol Chem. 2011 Apr 1;286(13):11021-34. doi: 10.1074/jbc.M110.196667. Epub 2011 Feb 4.
The widespread, long sought-after bacterial aerobic phenylalanine/phenylacetate catabolic pathway has recently been elucidated. It proceeds via coenzyme A (CoA) thioesters and involves the epoxidation of the aromatic ring of phenylacetyl-CoA, subsequent isomerization to an uncommon seven-membered C-O-heterocycle (oxepin-CoA), and non-oxygenolytic ring cleavage. Here we characterize the hydrolytic oxepin-CoA ring cleavage catalyzed by the bifunctional fusion protein PaaZ. The enzyme consists of a C-terminal (R)-specific enoyl-CoA hydratase domain (formerly MaoC) that cleaves the ring and produces a highly reactive aldehyde and an N-terminal NADP(+)-dependent aldehyde dehydrogenase domain that oxidizes the aldehyde to 3-oxo-5,6-dehydrosuberyl-CoA. In many phenylacetate-utilizing bacteria, the genes for the pathway exist in a cluster that contains an NAD(+)-dependent aldehyde dehydrogenase in place of PaaZ, whereas the aldehyde-producing hydratase is encoded outside of the cluster. If not oxidized immediately, the reactive aldehyde condenses intramolecularly to a stable cyclic derivative that is largely prevented by PaaZ fusion in vivo. Interestingly, the derivative likely serves as the starting material for the synthesis of antibiotics (e.g. tropodithietic acid) and other tropone/tropolone related compounds as well as for ω-cycloheptyl fatty acids. Apparently, bacteria made a virtue out of the necessity of disposing the dead-end product with ring hydrolysis as a metabolic branching point.
最近,人们已经阐明了广泛存在且长期以来备受人们追寻的细菌需氧苯丙氨酸/苯乙酸分解代谢途径。该途径通过辅酶 A(CoA)硫酯进行,并涉及苯乙酰-CoA 芳香环的环氧化,随后异构化为罕见的七元 C-O-杂环(环氧-CoA),以及非氧化裂解。在此,我们对双功能融合蛋白 PaaZ 催化的水解环氧-CoA 环裂解进行了表征。该酶由 C 端(R)特异性烯酰-CoA 水合酶结构域(前 MaoC)组成,该结构域可裂解环并产生高反应性醛,以及 N 端 NADP(+)依赖的醛脱氢酶结构域,该结构域可将醛氧化为 3-氧代-5,6-脱水亚己基-CoA。在许多利用苯乙酸的细菌中,该途径的基因存在于一个基因簇中,该基因簇包含一个 NAD(+)依赖的醛脱氢酶,而不是 PaaZ,而产醛的水合酶则编码在基因簇之外。如果醛不能立即被氧化,反应性醛会在体内发生分子内缩合,形成稳定的环状衍生物,而这种衍生物在很大程度上被 PaaZ 融合所阻止。有趣的是,该衍生物可能是抗生素(如 tropodithietic acid)和其他 tropone/tropolone 相关化合物以及ω-环庚基脂肪酸合成的起始材料。显然,细菌将环水解作为代谢分支点来处理死胡同产物的必要性转化为优势。