State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
Appl Environ Microbiol. 2018 May 31;84(12). doi: 10.1128/AEM.00349-18. Print 2018 Jun 15.
Tropolonoids are important natural products that contain a unique seven-membered aromatic tropolone core and exhibit remarkable biological activities. 3,7-Dihydroxytropolone (DHT) isolated from species is a multiply hydroxylated tropolone exhibiting antimicrobial, anticancer, and antiviral activities. In this study, we determined the DHT biosynthetic pathway by heterologous expression, gene deletion, and biotransformation. Nine genes and some of the aerobic phenylacetic acid degradation pathway genes () located outside the biosynthetic gene cluster are required for the heterologous production of DHT. The gene encodes a single-domain protein homologous to the C-terminal enoyl coenzyme A (enoyl-CoA) hydratase domain of PaaZ. TrlA truncates the phenylacetic acid catabolic pathway and redirects it toward the formation of heptacyclic intermediates. TrlB is a 3-deoxy-d-arabino-heptulosonic acid-7-phosphate (DAHP) synthase homolog. TrlH is an unusual bifunctional protein bearing an N-terminal prephenate dehydratase domain and a C-terminal chorismate mutase domain. TrlB and TrlH enhanced biosynthesis of phenylpyruvate, thereby providing abundant precursor for the prolific production of DHT in spp. Six seven-membered carbocyclic compounds were identified from the , , , and deletion mutants. Four of these chemicals, including 1,4,6-cycloheptatriene-1-carboxylic acid, tropone, tropolone, and 7-hydroxytropolone, were verified as key biosynthetic intermediates. TrlF is required for the conversion of 1,4,6-cycloheptatriene-1-carboxylic acid into tropone. The monooxygenases TrlE and TrlCD catalyze the regioselective hydroxylations of tropone to produce DHT. This study reveals a natural association of anabolism of chorismate and phenylpyruvate, catabolism of phenylacetic acid, and biosynthesis of tropolones in spp. Tropolonoids are promising drug lead compounds because of the versatile bioactivities attributed to their highly oxidized seven-membered aromatic ring scaffolds. Our present study provides clear insight into the biosynthesis of 3,7-dihydroxytropolone (DHT) through the identification of key genes responsible for the formation and modification of the seven-membered aromatic core. We also reveal the intrinsic mechanism of elevated production of DHT and related tropolonoids in spp. The study on DHT biosynthesis in exhibits a good example of antibiotic production in which both anabolic and catabolic pathways of primary metabolism are interwoven into the biosynthesis of secondary metabolites. Furthermore, our study sets the stage for metabolic engineering of the biosynthetic pathway for natural tropolonoid products and provides alternative synthetic biology tools for engineering novel tropolonoids.
三并呋喃酮类化合物是一类重要的天然产物,具有独特的七元芳香三并呋喃核心结构,表现出显著的生物活性。从 种中分离出的 3,7-二羟基三并呋喃酮(DHT)是一种多羟基三并呋喃酮,具有抗菌、抗癌和抗病毒活性。在本研究中,我们通过异源表达、基因缺失和生物转化确定了 DHT 的生物合成途径。九个 基因和一些位于 生物合成基因簇外的有氧苯乙酸降解途径基因()是异源生产 DHT 所必需的。基因编码一个与 PaaZ 的 C 端烯酰辅酶 A(enoyl-CoA)水合酶结构域同源的单结构域蛋白。TrlA 截断苯乙酸分解代谢途径,并将其重新导向七元环中间产物的形成。TrlB 是 3-去氧-d-阿拉伯庚酮糖-7-磷酸(DAHP)合酶同源物。TrlH 是一种不寻常的双功能蛋白,具有 N 端预苯酸脱水酶结构域和 C 端磷酸烯醇丙酮酸羧化酶结构域。TrlB 和 TrlH 增强了苯丙酮酸的生物合成,从而为 种中 DHT 的大量生产提供了丰富的前体。从 、 、 、和缺失突变体中鉴定出六种七元碳环化合物。其中四种化学物质,包括 1,4,6-环庚三烯-1-羧酸、三并呋喃酮、三并呋喃酮和 7-羟基三并呋喃酮,被验证为关键的生物合成中间体。TrlF 是将 1,4,6-环庚三烯-1-羧酸转化为三并呋喃酮所必需的。单加氧酶 TrlE 和 TrlCD 催化三并呋喃酮的区域选择性羟基化,生成 DHT。本研究揭示了 种中色氨酸和苯丙酮酸的生物合成、苯乙酸的分解代谢以及三并呋喃酮的生物合成之间的天然关联。由于其高度氧化的七元芳香环支架所赋予的多种生物活性,三并呋喃酮类化合物是有前途的药物先导化合物。本研究通过鉴定负责形成和修饰七元芳香核的关键基因,为 3,7-二羟基三并呋喃酮(DHT)的生物合成提供了清晰的认识。我们还揭示了 种中 DHT 和相关三并呋喃酮高产的内在机制。在 中进行 DHT 生物合成的研究展示了抗生素生产的一个很好的例子,其中初级代谢的合成和分解途径都交织在次生代谢物的生物合成中。此外,我们的研究为天然三并呋喃酮产物的生物合成途径的代谢工程奠定了基础,并为工程新型三并呋喃酮提供了替代的合成生物学工具。