Suppr超能文献

恶臭假单胞菌 H16 对丙酮酸脱氢酶复合物 E3 组件 PdhL 缺失的多功能代谢适应。

Versatile metabolic adaptations of Ralstonia eutropha H16 to a loss of PdhL, the E3 component of the pyruvate dehydrogenase complex.

机构信息

Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Corrensstraße 3, D-48149 Münster, Germany.

出版信息

Appl Environ Microbiol. 2011 Apr;77(7):2254-63. doi: 10.1128/AEM.02360-10. Epub 2011 Feb 4.

Abstract

A previous study reported that the Tn5-induced poly(3-hydroxybutyric acid) (PHB)-leaky mutant Ralstonia eutropha H1482 showed a reduced PHB synthesis rate and significantly lower dihydrolipoamide dehydrogenase (DHLDH) activity than the wild-type R. eutropha H16 but similar growth behavior. Insertion of Tn5 was localized in the pdhL gene encoding the DHLDH (E3 component) of the pyruvate dehydrogenase complex (PDHC). Taking advantage of the available genome sequence of R. eutropha H16, observations were verified and further detailed analyses and experiments were done. In silico genome analysis revealed that R. eutropha possesses all five known types of 2-oxoacid multienzyme complexes and five DHLDH-coding genes. Of these DHLDHs, only PdhL harbors an amino-terminal lipoyl domain. Furthermore, insertion of Tn5 in pdhL of mutant H1482 disrupted the carboxy-terminal dimerization domain, thereby causing synthesis of a truncated PdhL lacking this essential region, obviously leading to an inactive enzyme. The defined ΔpdhL deletion mutant of R. eutropha exhibited the same phenotype as the Tn5 mutant H1482; this excludes polar effects as the cause of the phenotype of the Tn5 mutant H1482. However, insertion of Tn5 or deletion of pdhL decreases DHLDH activity, probably negatively affecting PDHC activity, causing the mutant phenotype. Moreover, complementation experiments showed that different plasmid-encoded E3 components of R. eutropha H16 or of other bacteria, like Burkholderia cepacia, were able to restore the wild-type phenotype at least partially. Interestingly, the E3 component of B. cepacia possesses an amino-terminal lipoyl domain, like the wild-type H16. A comparison of the proteomes of the wild-type H16 and of the mutant H1482 revealed striking differences and allowed us to reconstruct at least partially the impressive adaptations of R. eutropha H1482 to the loss of PdhL on the cellular level.

摘要

先前的研究报告表明,Tn5 诱导的聚(3-羟基丁酸酯)(PHB)渗漏突变体 Ralstonia eutropha H1482 表现出降低的 PHB 合成速率和明显更低的二氢硫辛酰胺脱氢酶(DHLDH)活性,比野生型 R. eutropha H16 但相似的生长行为。Tn5 的插入定位于编码丙酮酸脱氢酶复合物(PDHC)的 DHLDH(E3 成分)的 pdhL 基因中。利用 R. eutropha H16 可用的基因组序列,观察结果得到了验证,并进行了进一步的详细分析和实验。计算机基因组分析表明,R. eutropha 拥有所有五种已知类型的 2-氧代酸多酶复合物和五个 DHLDH 编码基因。在这些 DHLDH 中,只有 PdhL 具有氨基末端的脂酰基结构域。此外,突变体 H1482 中 Tn5 的插入破坏了羧基末端二聚化结构域,从而导致缺乏这个必需区域的截断 PdhL 的合成,明显导致酶失活。R. eutropha 的定义 ΔpdhL 缺失突变体表现出与 Tn5 突变体 H1482 相同的表型;这排除了极性效应是 Tn5 突变体 H1482 表型的原因。然而,Tn5 的插入或 pdhL 的缺失降低了 DHLDH 活性,可能负地影响 PDHC 活性,导致突变体表型。此外,互补实验表明,来自 R. eutropha H16 或其他细菌(如 Burkholderia cepacia)的不同质粒编码的 E3 成分能够至少部分地恢复野生型表型。有趣的是,B. cepacia 的 E3 成分具有氨基末端的脂酰基结构域,就像野生型 H16 一样。野生型 H16 和突变体 H1482 的蛋白质组比较显示出显著的差异,并使我们能够至少部分地重建 R. eutropha H1482 在细胞水平上失去 PdhL 的惊人适应。

相似文献

1
Versatile metabolic adaptations of Ralstonia eutropha H16 to a loss of PdhL, the E3 component of the pyruvate dehydrogenase complex.
Appl Environ Microbiol. 2011 Apr;77(7):2254-63. doi: 10.1128/AEM.02360-10. Epub 2011 Feb 4.
4
Genome-wide transcriptome analyses of the 'Knallgas' bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism.
Microbiology (Reading). 2010 Jul;156(Pt 7):2136-2152. doi: 10.1099/mic.0.038380-0. Epub 2010 Apr 15.
7
Establishment of an alternative phosphoketolase-dependent pathway for fructose catabolism in Ralstonia eutropha H16.
Appl Microbiol Biotechnol. 2011 Aug;91(3):769-76. doi: 10.1007/s00253-011-3284-5. Epub 2011 Apr 26.
9
A closer look on the polyhydroxybutyrate- (PHB-) negative phenotype of Ralstonia eutropha PHB-4.
PLoS One. 2014 May 2;9(5):e95907. doi: 10.1371/journal.pone.0095907. eCollection 2014.

引用本文的文献

本文引用的文献

1
Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16.
J Bacteriol. 2010 Oct;192(20):5319-28. doi: 10.1128/JB.00207-10. Epub 2010 Aug 20.
3
Genomic view of energy metabolism in Ralstonia eutropha H16.
J Mol Microbiol Biotechnol. 2009;16(1-2):38-52. doi: 10.1159/000142893. Epub 2008 Oct 29.
4
Ralstonia eutropha H16 flagellation changes according to nutrient supply and state of poly(3-hydroxybutyrate) accumulation.
Appl Environ Microbiol. 2008 Jul;74(14):4477-90. doi: 10.1128/AEM.00440-08. Epub 2008 May 23.
7
The state of the art in the analysis of two-dimensional gel electrophoresis images.
Appl Microbiol Biotechnol. 2007 Oct;76(6):1223-43. doi: 10.1007/s00253-007-1128-0. Epub 2007 Aug 23.
8
Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16.
Nat Biotechnol. 2006 Oct;24(10):1257-62. doi: 10.1038/nbt1244. Epub 2006 Sep 10.
9
Pseudomonas oleovorans as a Source of Poly(beta-Hydroxyalkanoates) for Potential Applications as Biodegradable Polyesters.
Appl Environ Microbiol. 1988 Aug;54(8):1977-82. doi: 10.1128/aem.54.8.1977-1982.1988.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验