BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
Metab Eng. 2021 Sep;67:262-276. doi: 10.1016/j.ymben.2021.06.010. Epub 2021 Jul 2.
Butanediols are widely used in the synthesis of polymers, specialty chemicals and important chemical intermediates. Optically pure R-form of 1,3-butanediol (1,3-BDO) is required for the synthesis of several industrial compounds and as a key intermediate of β-lactam antibiotic production. The (R)-1,3-BDO can only be produced by application of a biocatalytic process. Cupriavidus necator H16 is an established production host for biosynthesis of biodegradable polymer poly-3-hydroxybutryate (PHB) via acetyl-CoA intermediate. Therefore, the utilisation of acetyl-CoA or its upstream precursors offers a promising strategy for engineering biosynthesis of value-added products such as (R)-1,3-BDO in this bacterium. Notably, C. necator H16 is known for its natural capacity to fix carbon dioxide (CO) using hydrogen as an electron donor. Here, we report engineering of this facultative lithoautotrophic bacterium for heterotrophic and autotrophic production of (R)-1,3-BDO. Implementation of (R)-3-hydroxybutyraldehyde-CoA- and pyruvate-dependent biosynthetic pathways in combination with abolishing PHB biosynthesis and reducing flux through the tricarboxylic acid cycle enabled to engineer strain, which produced 2.97 g/L of (R)-1,3-BDO and achieved production rate of nearly 0.4 Cmol Cmol h autotrophically. This is first report of (R)-1,3-BDO production from CO.
1,3-丁二醇是一种广泛应用于聚合物、特种化学品和重要化学中间体合成的物质。光学纯的 R 型 1,3-丁二醇(1,3-BDO)是合成几种工业化合物和作为β-内酰胺抗生素生产的关键中间体所必需的。(R)-1,3-BDO 只能通过生物催化过程来生产。铜绿假单胞菌 H16 是一种已建立的生产宿主,可通过乙酰辅酶 A 中间体合成可生物降解聚合物聚 3-羟基丁酸酯(PHB)。因此,利用乙酰辅酶 A 或其上游前体为该细菌中(R)-1,3-BDO 等增值产品的生物合成工程提供了一种有前途的策略。值得注意的是,铜绿假单胞菌 H16 以利用氢气作为电子供体固定二氧化碳(CO)的天然能力而闻名。在这里,我们报告了对这种兼性自养细菌进行工程改造,以实现(R)-1,3-BDO 的异养和自养生产。实施(R)-3-羟基丁醛-CoA 和丙酮酸依赖性生物合成途径,同时消除 PHB 生物合成并减少三羧酸循环通量,使工程菌株能够生产 2.97g/L 的(R)-1,3-BDO,并实现了近 0.4 Cmol Cmol h 的自养生产速率。这是首次从 CO 生产(R)-1,3-BDO 的报道。