Suppr超能文献

时间-浓度-效应模型预测急性毒性数据慢性致死率的准确性评估。

Accuracy assessment of time-concentration-effect models in predicting chronic lethality from acute toxicity data.

出版信息

Environ Toxicol Chem. 2011 Mar;30(3):757-62. doi: 10.1002/etc.429. Epub 2011 Jan 13.

Abstract

Acute-to-chronic (ACE) models (accelerated life testing, ALT; linear regression analysis, LRA) are used to estimate chemical concentrations resulting in low levels of chronic mortality from acute toxicity data, thereby greatly increasing the inferential value of acute data. We applied the ACE models to test data from 72 chemicals and 14 aquatic species (131 acute and 97 chronic tests) and then compared the results with reported chronic no observed effect concentrations (NOEC) and lowest observed effect concentrations (LOEC), as determined by traditional analysis of variance techniques. Acute-to-chronic models produced highly accurate chronic lethality estimates compared with reported chronic NOEC and LOEC values. Lethality estimates fell within two times reported NOEC-LOEC values 71% of the time and within five times 98% of the time. Therefore, ACE models are very appropriate for estimating chronic lethality from acute toxicity data when chronic data are absent and have high applicability in probability-based hazard and risk assessments.

摘要

急-慢(ACE)模型(加速寿命测试,ALT;线性回归分析,LRA)用于根据急性毒性数据估算导致慢性低死亡率的化学物质浓度,从而大大提高了急性数据的推断价值。我们将 ACE 模型应用于 72 种化学物质和 14 种水生物种(131 个急性和 97 个慢性测试)的测试数据,然后将结果与报告的慢性无观察效应浓度(NOEC)和最低观察效应浓度(LOEC)进行比较,这些浓度是通过传统的方差分析技术确定的。与报告的慢性 NOEC 和 LOEC 值相比,急-慢模型对慢性致死性的估计非常准确。致死性估计值在报告的 NOEC-LOEC 值的两倍内的时间为 71%,在报告的 NOEC-LOEC 值的五倍内的时间为 98%。因此,当缺乏慢性数据时,ACE 模型非常适合从急性毒性数据估算慢性致死性,并且在基于概率的危害和风险评估中有很高的适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验