Suppr超能文献

利用自动扫描荧光显微镜进行新型虚拟细胞学分析检测子宫内膜癌细胞。

Novel virtual cytological analysis for the detection of endometrial cancer cells using autoscan fluoromicroscopy.

机构信息

Investigative Treatment Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan.

出版信息

Cancer Sci. 2011 May;102(5):1068-75. doi: 10.1111/j.1349-7006.2011.01903.x. Epub 2011 Mar 7.

Abstract

The current medical examinations for detecting endometrial cancer can sometimes be stressful and inconvenient for examinees and examiners. Therefore, we attempted to develop an autoscan-virtual cytology system for detecting endometrial cancer without relying on judgment by the human eye. Exfoliated cells from the uterus were retrieved using a tampon inserted for 3 h. More than 100 monoclonal antibodies (mAb) developed by us were screened in three steps of immunohistochemistry to find mAb sets that would enable the cancer and normal endometrium to be perfectly distinguished. The exfoliated cells provided by 30 endometrial cancer patients and a total of 37 samples of 14 non-malignant volunteers including the menstrual cycle were analyzed using imaging cytometry. All samples contained epithelial cells and dysplasia cells, but the pathologist could not definitively diagnose all of them as endometrial cancer cells because most cells had degenerated. Twenty-two of 28 endometrial cancer tissues (79%) were positive with four mAb sets, CRELD1, GRK5, SLC25A27 and STC2, and 22 of 22 normal endometriums (100%) were negative. Our newly developed autoscan-virtual cytology for exfoliated endometrial cells showed overall sensitivity for endometrial cancer patients and overall specificity for volunteers of 50% (15/30) and 95% (35/37), respectively. Our autoscan-virtual cytology combined with cancer-specific mAb and imaging cytometry could be useful for endometrial cancer detection. Autoscan-virtual cytology for endometrial cancer deserves further evaluation for future endometrial cancer screening.

摘要

目前用于检测子宫内膜癌的医学检查有时会给受检者和检查者带来压力和不便。因此,我们试图开发一种自动扫描虚拟细胞学系统,用于检测子宫内膜癌,而无需依赖人眼的判断。通过插入 3 小时的棉塞从子宫中取出脱落细胞。我们用 100 多种单克隆抗体(mAb)进行了三步免疫组化筛选,找到了可以完美区分癌症和正常子宫内膜的 mAb 组合。使用成像细胞术分析了 30 名子宫内膜癌患者提供的脱落细胞和总共 14 名非恶性志愿者的 37 个样本,包括月经周期。所有样本均含有上皮细胞和异型增生细胞,但病理学家无法明确诊断所有细胞为子宫内膜癌细胞,因为大多数细胞已经退化。28 个子宫内膜癌组织中有 22 个(79%)对四个 mAb 组,CRELD1、GRK5、SLC25A27 和 STC2 呈阳性,22 个正常子宫内膜(100%)呈阴性。我们新开发的用于脱落子宫内膜细胞的自动扫描虚拟细胞学对子宫内膜癌患者的总体敏感性为 50%(15/30),对志愿者的总体特异性为 95%(35/37)。我们的自动扫描虚拟细胞学结合癌症特异性 mAb 和成像细胞术可能对子宫内膜癌检测有用。用于子宫内膜癌的自动扫描虚拟细胞学值得进一步评估,以用于未来的子宫内膜癌筛查。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验