Suppr超能文献

CNOT2 耗竭破坏并抑制了 CCR4-NOT 脱腺苷酸酶复合物,并诱导细胞凋亡。

CNOT2 depletion disrupts and inhibits the CCR4-NOT deadenylase complex and induces apoptotic cell death.

机构信息

Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.

出版信息

Genes Cells. 2011 Apr;16(4):368-79. doi: 10.1111/j.1365-2443.2011.01492.x. Epub 2011 Feb 8.

Abstract

Eukaryotic mRNA decay is initiated by shortening of the poly (A) tail; however, neither the molecular mechanisms underlying deadenylation nor its regulation is well understood. The human CCR4-NOT complex is a major cytoplasmic deadenylase consisting of a combination of at least nine subunits, four of which have deadenylase activity. The roles of the other subunits remain obscure. Here, we show that CNOT2 depletion by siRNA induces apoptosis. We also show that CNOT2 depletion destabilizes the complex, resulting in the formation of a complex smaller than that formed in control siRNA-treated cells. The deadenylase activity of the CNOT6L subunit-containing complex prepared from CNOT2-depleted cells was less than that from control cells. Intriguingly, the formation of P-bodies, where mRNA degradation supposedly takes place, was largely suppressed in CNOT2-depleted cells. Furthermore, CNOT2 depletion enhanced CHOP mRNA levels, suggesting that endoplasmic reticulum (ER) stress was occurring, which causes apoptosis in a caspase-dependent manner. These results suggest that CNOT2 is important for controlling cell viability through the maintenance of the structural integrity and enzymatic activity of the CCR4-NOT complex.

摘要

真核生物的 mRNA 降解是通过 poly(A)尾巴的缩短来启动的;然而,腺苷酸化的分子机制及其调控都还没有被很好地理解。人类 CCR4-NOT 复合物是一种主要的细胞质脱腺苷酸化酶,由至少九个亚基组成,其中四个具有脱腺苷酸化活性。其他亚基的作用仍然不清楚。在这里,我们发现通过 siRNA 耗尽 CNOT2 会诱导细胞凋亡。我们还发现 CNOT2 耗尽会使复合物不稳定,导致形成的复合物小于对照 siRNA 处理的细胞形成的复合物。从 CNOT2 耗尽的细胞中制备的含有 CNOT6L 亚基的复合物的脱腺苷酸化活性低于对照细胞。有趣的是,在 CNOT2 耗尽的细胞中,P 体(据称 mRNA 降解发生的地方)的形成被极大地抑制。此外,CNOT2 的耗竭增加了 CHOP mRNA 的水平,表明内质网(ER)应激正在发生,这以半胱天冬酶依赖性的方式导致细胞凋亡。这些结果表明,CNOT2 通过维持 CCR4-NOT 复合物的结构完整性和酶活性对控制细胞活力很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验