Helmholtz AI, Helmholtz Zentrum München, Neuherberg, Germany.
Institute of Experimental Genetics, German Research Center for Environmental Health, Neuherberg, Germany.
Mamm Genome. 2023 Jun;34(2):200-215. doi: 10.1007/s00335-023-09996-x. Epub 2023 May 23.
Echocardiography, a rapid and cost-effective imaging technique, assesses cardiac function and structure. Despite its popularity in cardiovascular medicine and clinical research, image-derived phenotypic measurements are manually performed, requiring expert knowledge and training. Notwithstanding great progress in deep-learning applications in small animal echocardiography, the focus has so far only been on images of anesthetized rodents. We present here a new algorithm specifically designed for echocardiograms acquired in conscious mice called Echo2Pheno, an automatic statistical learning workflow for analyzing and interpreting high-throughput non-anesthetized transthoracic murine echocardiographic images in the presence of genetic knockouts. Echo2Pheno comprises a neural network module for echocardiographic image analysis and phenotypic measurements, including a statistical hypothesis-testing framework for assessing phenotypic differences between populations. Using 2159 images of 16 different knockout mouse strains of the German Mouse Clinic, Echo2Pheno accurately confirms known cardiovascular genotype-phenotype relationships (e.g., Dystrophin) and discovers novel genes (e.g., CCR4-NOT transcription complex subunit 6-like, Cnot6l, and synaptotagmin-like protein 4, Sytl4), which cause altered cardiovascular phenotypes, as verified by H&E-stained histological images. Echo2Pheno provides an important step toward automatic end-to-end learning for linking echocardiographic readouts to cardiovascular phenotypes of interest in conscious mice.
超声心动图是一种快速且具有成本效益的成像技术,可评估心脏功能和结构。尽管它在心血管医学和临床研究中很受欢迎,但图像衍生的表型测量仍需手动进行,这需要专业知识和培训。尽管深度学习在小动物超声心动图中的应用取得了很大进展,但目前的重点仅放在麻醉啮齿动物的图像上。我们在这里介绍一种专门为清醒小鼠的超声心动图设计的新算法,称为 Echo2Pheno,这是一种用于分析和解释存在基因敲除的高通量非麻醉性经胸鼠超声心动图图像的自动统计学习工作流程。Echo2Pheno 包括一个用于超声心动图图像分析和表型测量的神经网络模块,包括用于评估群体之间表型差异的统计假设检验框架。使用来自德国小鼠临床中心的 16 种不同基因敲除小鼠品系的 2159 张图像,Echo2Pheno 准确地证实了已知的心血管基因型-表型关系(例如,肌营养不良蛋白),并发现了导致心血管表型改变的新基因(例如,CCR4-NOT 转录复合物亚基 6 样蛋白 Cnot6l 和突触结合蛋白样蛋白 4,Sytl4),这些改变通过 H&E 染色的组织学图像得到了验证。Echo2Pheno 为在清醒小鼠中自动进行从超声心动图读数到感兴趣的心血管表型的端到端学习提供了重要的一步。