Suppr超能文献

Echo2Pheno:一种用于在清醒小鼠中揭示超声心动图表型的深度学习应用。

Echo2Pheno: a deep-learning application to uncover echocardiographic phenotypes in conscious mice.

机构信息

Helmholtz AI, Helmholtz Zentrum München, Neuherberg, Germany.

Institute of Experimental Genetics, German Research Center for Environmental Health, Neuherberg, Germany.

出版信息

Mamm Genome. 2023 Jun;34(2):200-215. doi: 10.1007/s00335-023-09996-x. Epub 2023 May 23.

Abstract

Echocardiography, a rapid and cost-effective imaging technique, assesses cardiac function and structure. Despite its popularity in cardiovascular medicine and clinical research, image-derived phenotypic measurements are manually performed, requiring expert knowledge and training. Notwithstanding great progress in deep-learning applications in small animal echocardiography, the focus has so far only been on images of anesthetized rodents. We present here a new algorithm specifically designed for echocardiograms acquired in conscious mice called Echo2Pheno, an automatic statistical learning workflow for analyzing and interpreting high-throughput non-anesthetized transthoracic murine echocardiographic images in the presence of genetic knockouts. Echo2Pheno comprises a neural network module for echocardiographic image analysis and phenotypic measurements, including a statistical hypothesis-testing framework for assessing phenotypic differences between populations. Using 2159 images of 16 different knockout mouse strains of the German Mouse Clinic, Echo2Pheno accurately confirms known cardiovascular genotype-phenotype relationships (e.g., Dystrophin) and discovers novel genes (e.g., CCR4-NOT transcription complex subunit 6-like, Cnot6l, and synaptotagmin-like protein 4, Sytl4), which cause altered cardiovascular phenotypes, as verified by H&E-stained histological images. Echo2Pheno provides an important step toward automatic end-to-end learning for linking echocardiographic readouts to cardiovascular phenotypes of interest in conscious mice.

摘要

超声心动图是一种快速且具有成本效益的成像技术,可评估心脏功能和结构。尽管它在心血管医学和临床研究中很受欢迎,但图像衍生的表型测量仍需手动进行,这需要专业知识和培训。尽管深度学习在小动物超声心动图中的应用取得了很大进展,但目前的重点仅放在麻醉啮齿动物的图像上。我们在这里介绍一种专门为清醒小鼠的超声心动图设计的新算法,称为 Echo2Pheno,这是一种用于分析和解释存在基因敲除的高通量非麻醉性经胸鼠超声心动图图像的自动统计学习工作流程。Echo2Pheno 包括一个用于超声心动图图像分析和表型测量的神经网络模块,包括用于评估群体之间表型差异的统计假设检验框架。使用来自德国小鼠临床中心的 16 种不同基因敲除小鼠品系的 2159 张图像,Echo2Pheno 准确地证实了已知的心血管基因型-表型关系(例如,肌营养不良蛋白),并发现了导致心血管表型改变的新基因(例如,CCR4-NOT 转录复合物亚基 6 样蛋白 Cnot6l 和突触结合蛋白样蛋白 4,Sytl4),这些改变通过 H&E 染色的组织学图像得到了验证。Echo2Pheno 为在清醒小鼠中自动进行从超声心动图读数到感兴趣的心血管表型的端到端学习提供了重要的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d5e/10290584/df7e6897227c/335_2023_9996_Fig1_HTML.jpg

相似文献

1
Echo2Pheno: a deep-learning application to uncover echocardiographic phenotypes in conscious mice.
Mamm Genome. 2023 Jun;34(2):200-215. doi: 10.1007/s00335-023-09996-x. Epub 2023 May 23.
2
Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography.
IEEE Trans Med Imaging. 2019 Sep;38(9):2198-2210. doi: 10.1109/TMI.2019.2900516. Epub 2019 Feb 22.
3
Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study.
Lancet Digit Health. 2022 Jan;4(1):e46-e54. doi: 10.1016/S2589-7500(21)00235-1. Epub 2021 Dec 1.
6
A deep learning approach for the automatic recognition of prosthetic mitral valve in echocardiographic images.
Comput Biol Med. 2021 Jun;133:104388. doi: 10.1016/j.compbiomed.2021.104388. Epub 2021 Apr 14.
7
Fast interactive medical image segmentation with weakly supervised deep learning method.
Int J Comput Assist Radiol Surg. 2020 Sep;15(9):1437-1444. doi: 10.1007/s11548-020-02223-x. Epub 2020 Jul 11.
8
Echocardiographic speckle-tracking based strain imaging for rapid cardiovascular phenotyping in mice.
Circ Res. 2011 Apr 15;108(8):908-16. doi: 10.1161/CIRCRESAHA.110.239574. Epub 2011 Mar 3.
10

引用本文的文献

1
High expression of CNOT6L contributes to the negative development of type 2 diabetes.
Sci Rep. 2024 Oct 21;14(1):24723. doi: 10.1038/s41598-024-76095-5.
2
Realistic Aspects of Cardiac Ultrasound in Rats: Practical Tips for Improved Examination.
J Imaging. 2024 Sep 6;10(9):219. doi: 10.3390/jimaging10090219.

本文引用的文献

1
Blinded, randomized trial of sonographer versus AI cardiac function assessment.
Nature. 2023 Apr;616(7957):520-524. doi: 10.1038/s41586-023-05947-3. Epub 2023 Apr 5.
2
Fully automated mouse echocardiography analysis using deep convolutional neural networks.
Am J Physiol Heart Circ Physiol. 2022 Oct 1;323(4):H628-H639. doi: 10.1152/ajpheart.00208.2022. Epub 2022 Aug 19.
3
Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis.
Cardiovasc Ultrasound. 2021 Aug 20;19(1):29. doi: 10.1186/s12947-021-00261-2.
5
Utility of a Deep-Learning Algorithm to Guide Novices to Acquire Echocardiograms for Limited Diagnostic Use.
JAMA Cardiol. 2021 Jun 1;6(6):624-632. doi: 10.1001/jamacardio.2021.0185.
6
Crystal structure of the mitochondrial protein mitoNEET bound to a benze-sulfonide ligand.
Commun Chem. 2019;2. doi: 10.1038/s42004-019-0172-x. Epub 2019 Jul 3.
7
Deep learning interpretation of echocardiograms.
NPJ Digit Med. 2020 Jan 24;3:10. doi: 10.1038/s41746-019-0216-8. eCollection 2020.
8
Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association.
Circulation. 2020 Mar 3;141(9):e139-e596. doi: 10.1161/CIR.0000000000000757. Epub 2020 Jan 29.
9
High Blood Pressure and Cardiovascular Disease.
Hypertension. 2020 Feb;75(2):285-292. doi: 10.1161/HYPERTENSIONAHA.119.14240. Epub 2019 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验