Neuroscience Program, University of Illinois at Urbana-Champaign, 407 S. Goodwin Ave. 524 Burrill Hall, Urbana, IL 61801, USA.
J Physiol. 2011 Apr 1;589(Pt 7):1571-85. doi: 10.1113/jphysiol.2010.203315. Epub 2011 Feb 7.
Changes in synaptic strength allow synapses to regulate the flow of information in the neural circuits in which they operate. In particular, changes lasting from milliseconds to minutes (‘short-term changes') underlie a variety of computational operations and, ultimately, behaviours. Most studies thus far have attributed the short-term type of plasticity to activity-dependent changes in the dynamics of neurotransmitter release (a presynaptic mechanism) while largely dismissing the role of the loss of responsiveness of postsynaptic receptor channels to neurotransmitter owing to entry into desensitization. To better define the response of the different neurotransmitter-gated ion channels (NGICs) to repetitive stimulation without interference from presynaptic variables, we studied eight representative members of all three known superfamilies of NGICs in fast-perfused outside-out patches of membrane. We found that the responsiveness of all tested channels (two nicotinic acetylcholine receptors, two glycine receptors, one GABA receptor, two AMPA-type glutamate receptors and one purinergic receptor) declines along trains of brief neurotransmitter pulses delivered at physiologically relevant frequencies to an extent that suggests that the role of desensitization in the synaptic control of action-potential transmission may be more general than previously thought. Furthermore, our results indicate that a sizable fraction (and, for some NGICs, most) of this desensitization occurs during the neurotransmitter-free interpulse intervals. Clearly, an incomplete clearance of neurotransmitter from the synaptic cleft between vesicle-fusion events need not be invoked to account for NGIC desensitization upon repetitive stimulation.
突触强度的变化使突触能够调节其所在的神经回路中信息的流动。特别是,持续时间从毫秒到分钟的短期变化(short-term changes)是各种计算操作的基础,最终也是行为的基础。迄今为止,大多数研究都将短期可塑性归因于神经递质释放动力学的活动依赖性变化(一种突触前机制),而在很大程度上忽略了由于进入脱敏而导致突触后受体通道对神经递质反应性丧失的作用。为了更好地定义不同的递质门控离子通道(NGICs)在不受突触前变量干扰的情况下对重复刺激的反应,我们在快速灌流的膜外小片中研究了三种已知的 NGIC 超家族的所有 8 个代表性成员。我们发现,所有测试通道(两个烟碱型乙酰胆碱受体、两个甘氨酸受体、一个 GABA 受体、两个 AMPA 型谷氨酸受体和一个嘌呤能受体)的反应性在以生理相关频率传递短神经递质脉冲的串中下降,这表明脱敏在动作电位传输的突触控制中的作用可能比以前想象的更为普遍。此外,我们的结果表明,在神经递质无脉冲的间隔期间,这种脱敏的相当一部分(对于某些 NGIC 来说,大部分)发生。显然,不需要引入囊泡融合事件之间的突触间隙中神经递质清除不完全的概念来解释重复刺激时 NGIC 的脱敏现象。