Department of Radiology, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
J Bone Miner Metab. 2011 Mar;29(2):131-40. doi: 10.1007/s00774-010-0258-0. Epub 2011 Feb 8.
Advances in bone imaging techniques have provided tools for analyzing bone structure at the macro-, micro- and nano-level. Quantitative assessment of macrostructure can be achieved using dual X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), particularly volumetric quantitative CT (vQCT). In vivo quantitative techniques for assessing the microstructure of trabecular bone non-invasively and non-destructively include high-resolution CT (HR-CT) and high-resolution magnetic resonance (HR-MR). Compared with MR imaging, CT-based techniques have the advantage of directly visualizing the bone in the axial skeleton, with high spatial resolution, but the disadvantage of delivering a considerable radiation dose. Micro-CT (μCT), which provides a higher resolution of the microstructure and is principally applicable in vitro, has undergone technological advances such that it is now able to elucidate the physiological skeletal change mechanisms associated with aging and determine the effects of therapeutic intervention on the bone microstructure. In particular, synchrotron μCT (SR-CT) provides a more detailed view of trabecular structure at the nano-level. For the assessment of hip geometry, DXA-based hip structure analysis (HSA) and CT-based HSA have been developed. DXA-based HSA is a convenient tool for analyzing biomechanical properties and for assuming cross-sectional hip geometry based on two-dimensional (2D) data, whereas CT-based HSA provides these parameters three-dimensionally in robust relationship with biomechanical properties, at the cost of greater radiation exposure and the lengthy time required for the analytical procedure. Further progress in bone imaging technology is promising to bring new aspects of bone structure in relation to bone strength to light, and to establish a means for analyzing bone structural properties in the everyday clinical setting.
骨成像技术的进步为分析宏观、微观和纳米水平的骨结构提供了工具。双能 X 线吸收测定法(DXA)和定量计算机断层扫描(QCT),特别是体积定量 CT(vQCT)可用于评估宏观结构。高分辨率 CT(HR-CT)和高分辨率磁共振(HR-MR)等用于非侵入性、无损评估小梁骨微观结构的活体定量技术。与磁共振成像相比,基于 CT 的技术具有直接在轴状骨中可视化骨的优势,具有较高的空间分辨率,但缺点是会产生相当大的辐射剂量。微计算机断层扫描(μCT)可提供更高的微观结构分辨率,主要适用于体外,现已在技术上取得进展,能够阐明与衰老相关的生理骨骼变化机制,并确定治疗干预对骨微观结构的影响。特别是同步辐射微计算机断层扫描(SR-CT)能够更详细地观察纳米级的小梁结构。为了评估髋部几何形状,已经开发了基于 DXA 的髋部结构分析(HSA)和基于 CT 的 HSA。基于 DXA 的 HSA 是一种方便的工具,可用于分析生物力学特性,并根据二维(2D)数据假设髋部的横截面几何形状,而基于 CT 的 HSA 则以与生物力学特性相关的三维方式提供这些参数,但其代价是辐射暴露量更大,分析过程所需的时间更长。骨成像技术的进一步发展有望揭示与骨强度相关的骨结构的新方面,并建立一种在日常临床环境中分析骨结构特性的方法。