Department of Medicine, University of California, San Francisco, CA, USA.
J Gen Intern Med. 2011 Aug;26(8):920-9. doi: 10.1007/s11606-010-1621-5. Epub 2011 Feb 8.
Secondary analyses of large datasets provide a mechanism for researchers to address high impact questions that would otherwise be prohibitively expensive and time-consuming to study. This paper presents a guide to assist investigators interested in conducting secondary data analysis, including advice on the process of successful secondary data analysis as well as a brief summary of high-value datasets and online resources for researchers, including the SGIM dataset compendium ( www.sgim.org/go/datasets ). The same basic research principles that apply to primary data analysis apply to secondary data analysis, including the development of a clear and clinically relevant research question, study sample, appropriate measures, and a thoughtful analytic approach. A real-world case description illustrates key steps: (1) define your research topic and question; (2) select a dataset; (3) get to know your dataset; and (4) structure your analysis and presentation of findings in a way that is clinically meaningful. Secondary dataset analysis is a well-established methodology. Secondary analysis is particularly valuable for junior investigators, who have limited time and resources to demonstrate expertise and productivity.
二次数据分析为研究人员提供了一种机制,可以解决那些如果进行研究则代价过高且耗时过长的重大问题。本文提供了一份指南,以帮助有兴趣进行二次数据分析的调查人员,包括有关成功进行二次数据分析的过程的建议,以及为研究人员提供的高价值数据集和在线资源的简要摘要,包括 SGIM 数据集纲要(www.sgim.org/go/datasets)。适用于原始数据分析的相同基本研究原则也适用于二次数据分析,包括明确和具有临床相关性的研究问题、研究样本、适当的措施以及深思熟虑的分析方法。一个真实案例描述说明了关键步骤:(1)定义您的研究主题和问题;(2)选择数据集;(3)了解您的数据集;以及(4)以具有临床意义的方式构建您的分析和结果呈现。二次数据集分析是一种成熟的方法。对于时间和资源有限、需要展示专业知识和生产力的初级研究人员来说,二次分析特别有价值。