Gupta Shakti, Maurya Mano R, Merrill Alfred H, Glass Christopher K, Subramaniam Shankar
Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.
BMC Syst Biol. 2011 Feb 8;5:26. doi: 10.1186/1752-0509-5-26.
Sphingolipids play important roles in cell structure and function as well as in the pathophysiology of many diseases. Many of the intermediates of sphingolipid biosynthesis are highly bioactive and sometimes have antagonistic activities, for example, ceramide promotes apoptosis whereas sphingosine-1-phosphate can inhibit apoptosis and induce cell growth; therefore, quantification of the metabolites and modeling of the sphingolipid network is imperative for an understanding of sphingolipid biology.
In this direction, the LIPID MAPS Consortium is developing methods to quantitate the sphingolipid metabolites in mammalian cells and is investigating their application to studies of the activation of the RAW264.7 macrophage cell by a chemically defined endotoxin, Kdo2-Lipid A. Herein, we describe a model for the C16-branch of sphingolipid metabolism (i.e., for ceramides with palmitate as the N-acyl-linked fatty acid, which is selected because it is a major subspecies for all categories of complex sphingolipids in RAW264.7 cells) integrating lipidomics and transcriptomics data and using a two-step matrix-based approach to estimate the rate constants from experimental data. The rate constants obtained from the first step are further refined using generalized constrained nonlinear optimization. The resulting model fits the experimental data for all species. The robustness of the model is validated through parametric sensitivity analysis.
A quantitative model of the sphigolipid pathway is developed by integrating metabolomics and transcriptomics data with legacy knowledge. The model could be used to design experimental studies of how genetic and pharmacological perturbations alter the flux through this important lipid biosynthetic pathway.
鞘脂在细胞结构与功能以及许多疾病的病理生理学中发挥着重要作用。鞘脂生物合成的许多中间产物具有高度生物活性,有时还具有拮抗活性,例如,神经酰胺促进细胞凋亡,而1-磷酸鞘氨醇可抑制细胞凋亡并诱导细胞生长;因此,对代谢产物进行定量分析以及构建鞘脂网络模型对于理解鞘脂生物学至关重要。
在这一方向上,脂质代谢途径图谱联盟正在开发定量分析哺乳动物细胞中鞘脂代谢产物的方法,并研究其在化学定义的内毒素Kdo2-脂多糖激活RAW264.7巨噬细胞的研究中的应用。在此,我们描述了一种鞘脂代谢C16分支的模型(即,以棕榈酸作为N-酰基连接脂肪酸的神经酰胺,选择它是因为它是RAW264.7细胞中所有复杂鞘脂类别的主要亚类),该模型整合了脂质组学和转录组学数据,并使用基于矩阵的两步法从实验数据中估计速率常数。第一步得到的速率常数通过广义约束非线性优化进一步优化。所得模型与所有物种的实验数据拟合。通过参数敏感性分析验证了模型的稳健性。
通过整合代谢组学和转录组学数据以及传统知识,建立了鞘脂途径的定量模型。该模型可用于设计实验研究,以探究遗传和药物扰动如何改变通过这一重要脂质生物合成途径的通量。