Suppr超能文献

PIAS 博士:一种综合系统,用于评估蛋白质-蛋白质相互作用的成药性。

Dr. PIAS: an integrative system for assessing the druggability of protein-protein interactions.

机构信息

Drug Discovery Department, Research & Development Division, PharmaDesign, Inc,, Hatchobori 2-19-8, Chuo-ku, Tokyo, Japan.

出版信息

BMC Bioinformatics. 2011 Feb 9;12:50. doi: 10.1186/1471-2105-12-50.

Abstract

BACKGROUND

The amount of data on protein-protein interactions (PPIs) available in public databases and in the literature has rapidly expanded in recent years. PPI data can provide useful information for researchers in pharmacology and medicine as well as those in interactome studies. There is urgent need for a novel methodology or software allowing the efficient utilization of PPI data in pharmacology and medicine.

RESULTS

To address this need, we have developed the 'Druggable Protein-protein Interaction Assessment System' (Dr. PIAS). Dr. PIAS has a meta-database that stores various types of information (tertiary structures, drugs/chemicals, and biological functions associated with PPIs) retrieved from public sources. By integrating this information, Dr. PIAS assesses whether a PPI is druggable as a target for small chemical ligands by using a supervised machine-learning method, support vector machine (SVM). Dr. PIAS holds not only known druggable PPIs but also all PPIs of human, mouse, rat, and human immunodeficiency virus (HIV) proteins identified to date.

CONCLUSIONS

The design concept of Dr. PIAS is distinct from other published PPI databases in that it focuses on selecting the PPIs most likely to make good drug targets, rather than merely collecting PPI data.

摘要

背景

近年来,公共数据库和文献中可获取的蛋白质-蛋白质相互作用(PPIs)数据量迅速增加。PPI 数据可以为药理学和医学研究人员以及相互作用组研究人员提供有用的信息。迫切需要一种新的方法或软件,以便在药理学和医学中有效地利用 PPI 数据。

结果

为满足这一需求,我们开发了“可成药蛋白质-蛋白质相互作用评估系统”(Dr. PIAS)。Dr. PIAS 拥有一个元数据库,其中存储了从公共资源中检索到的各种类型的信息(三级结构、药物/化学物质以及与 PPIs 相关的生物学功能)。通过整合这些信息,Dr. PIAS 使用有监督的机器学习方法(支持向量机,SVM)来评估 PPI 是否可作为小分子配体的靶标。Dr. PIAS 不仅包含已知的可成药 PPIs,还包含迄今为止鉴定的人类、小鼠、大鼠和人类免疫缺陷病毒(HIV)蛋白的所有 PPIs。

结论

Dr. PIAS 的设计理念与其他已发表的 PPI 数据库不同,它专注于选择最有可能成为良好药物靶标的 PPIs,而不仅仅是收集 PPI 数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ce8/3228542/66371b67c557/1471-2105-12-50-1.jpg

相似文献

1
Dr. PIAS: an integrative system for assessing the druggability of protein-protein interactions.
BMC Bioinformatics. 2011 Feb 9;12:50. doi: 10.1186/1471-2105-12-50.
2
Dr. PIAS 2.0: an update of a database of predicted druggable protein-protein interactions.
Database (Oxford). 2012 Oct 10;2012:bas034. doi: 10.1093/database/bas034. Print 2012.
3
Assessing the druggability of protein-protein interactions by a supervised machine-learning method.
BMC Bioinformatics. 2009 Aug 25;10:263. doi: 10.1186/1471-2105-10-263.
4
Computational probing protein-protein interactions targeting small molecules.
Bioinformatics. 2016 Jan 15;32(2):226-34. doi: 10.1093/bioinformatics/btv528. Epub 2015 Sep 28.
6
MEGADOCK-Web: an integrated database of high-throughput structure-based protein-protein interaction predictions.
BMC Bioinformatics. 2018 May 8;19(Suppl 4):62. doi: 10.1186/s12859-018-2073-x.
9
Application of Machine Learning Approaches for Protein-protein Interactions Prediction.
Med Chem. 2017;13(6):506-514. doi: 10.2174/1573406413666170522150940.

引用本文的文献

1
Inhibition of FOXP3 by stapled alpha-helical peptides dampens regulatory T cell function.
Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2209044119. doi: 10.1073/pnas.2209044119. Epub 2022 Oct 13.
2
Synergistic drug combinations from electronic health records and gene expression.
J Am Med Inform Assoc. 2017 May 1;24(3):565-576. doi: 10.1093/jamia/ocw161.
3
Small molecules, big targets: drug discovery faces the protein-protein interaction challenge.
Nat Rev Drug Discov. 2016 Aug;15(8):533-50. doi: 10.1038/nrd.2016.29. Epub 2016 Apr 11.
4
PDID: database of molecular-level putative protein-drug interactions in the structural human proteome.
Bioinformatics. 2016 Feb 15;32(4):579-86. doi: 10.1093/bioinformatics/btv597. Epub 2015 Oct 26.
5
2P2I HUNTER: a tool for filtering orthosteric protein-protein interaction modulators via a dedicated support vector machine.
J R Soc Interface. 2013 Nov 6;11(90):20130860. doi: 10.1098/rsif.2013.0860. Print 2014 Jan 6.
6
Trinucleotide repeats: a structural perspective.
Front Neurol. 2013 Jun 20;4:76. doi: 10.3389/fneur.2013.00076. eCollection 2013.
7
Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review.
Pharmacol Ther. 2013 Jun;138(3):333-408. doi: 10.1016/j.pharmthera.2013.01.016. Epub 2013 Feb 4.
8
Using a fragment-based approach to target protein-protein interactions.
Chembiochem. 2013 Feb 11;14(3):332-42. doi: 10.1002/cbic.201200521. Epub 2013 Jan 23.
9
Dr. PIAS 2.0: an update of a database of predicted druggable protein-protein interactions.
Database (Oxford). 2012 Oct 10;2012:bas034. doi: 10.1093/database/bas034. Print 2012.
10
Virus-host interactomes--antiviral drug discovery.
Curr Opin Virol. 2012 Oct;2(5):614-21. doi: 10.1016/j.coviro.2012.09.003.

本文引用的文献

1
Atomic analysis of protein-protein interfaces with known inhibitors: the 2P2I database.
PLoS One. 2010 Mar 9;5(3):e9598. doi: 10.1371/journal.pone.0009598.
2
EGFR signaling and drug discovery.
Oncology. 2009;77(6):400-10. doi: 10.1159/000279388. Epub 2010 Feb 2.
3
Update of TTD: Therapeutic Target Database.
Nucleic Acids Res. 2010 Jan;38(Database issue):D787-91. doi: 10.1093/nar/gkp1014. Epub 2009 Nov 20.
4
The Gene Ontology in 2010: extensions and refinements.
Nucleic Acids Res. 2010 Jan;38(Database issue):D331-5. doi: 10.1093/nar/gkp1018. Epub 2009 Nov 17.
5
The Pfam protein families database.
Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22. doi: 10.1093/nar/gkp985. Epub 2009 Nov 17.
6
ELM: the status of the 2010 eukaryotic linear motif resource.
Nucleic Acids Res. 2010 Jan;38(Database issue):D167-80. doi: 10.1093/nar/gkp1016. Epub 2009 Nov 17.
7
KEGG for representation and analysis of molecular networks involving diseases and drugs.
Nucleic Acids Res. 2010 Jan;38(Database issue):D355-60. doi: 10.1093/nar/gkp896. Epub 2009 Oct 30.
8
Atomic interactions and profile of small molecules disrupting protein-protein interfaces: the TIMBAL database.
Chem Biol Drug Des. 2009 Nov;74(5):457-67. doi: 10.1111/j.1747-0285.2009.00889.x.
9
Assessing the druggability of protein-protein interactions by a supervised machine-learning method.
BMC Bioinformatics. 2009 Aug 25;10:263. doi: 10.1186/1471-2105-10-263.
10
Recent advances of novel targeted therapy in non-small cell lung cancer.
J Hematol Oncol. 2009 Jan 21;2:2. doi: 10.1186/1756-8722-2-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验