Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland.
Appl Environ Microbiol. 2013 Jan;79(1):74-80. doi: 10.1128/AEM.02184-12. Epub 2012 Oct 12.
Listeria monocytogenes, the causative agent of human listeriosis, is known for its ability to withstand severe environmental stresses. The glutamate decarboxylase (GAD) system is one of the principal systems utilized by the bacterium to cope with acid stress, a reaction that produces γ-aminobutyrate (GABA) from glutamate. Recently, we have shown that GABA can accumulate intracellularly under acidic conditions, even under conditions where no extracellular glutamate-GABA exchange is detectable. The GABA shunt, a pathway that metabolizes GABA to succinate, has been described for several other bacterial genera, and the present study sought to determine whether L. monocytogenes has this metabolic capacity, which, if present, could provide a possible route for succinate biosynthesis in L. monocytogenes. Using crude protein extracts from L. monocytogenes EGD-e, we show that this strain exhibits activity for the two main enzyme reactions in the GABA shunt, GABA aminotransferase (GABA-AT) and succinic semialdehyde dehydrogenase (SSDH). Two genes were identified as candidates for encoding these enzyme activities, argD (GABA-AT) and lmo0913 (SSDH). Crude protein extracts prepared from a mutant lacking a functional argD gene significantly reduced GABA-AT activity, while an lmo0913 mutant lost all detectable SSDH activity. The deletion of lmo0913 increased the acid tolerance of EGD-e and showed an increased accumulation of intracellular GABA, suggesting that this pathway plays a significant role in the survival of this pathogen under acidic conditions. This is the first report of such a pathway in the genus Listeria, which highlights an important link between metabolism and acid tolerance and also presents a possible compensatory pathway to partially overcome the incomplete tricarboxylic acid cycle of Listeria.
产单核李斯特菌是人类李斯特菌病的病原体,其能够耐受恶劣的环境压力是众所周知的。谷氨酸脱羧酶(GAD)系统是细菌应对酸应激的主要系统之一,该反应将谷氨酸转化为γ-氨基丁酸(GABA)。最近,我们已经表明,在酸性条件下,即使在无法检测到细胞外谷氨酸-GABA 交换的情况下,GABA 也可以在细胞内积累。GABA 分流途径是一种将 GABA 代谢为琥珀酸的途径,已经在其他几个细菌属中进行了描述,本研究旨在确定产单核李斯特菌是否具有这种代谢能力,如果存在,这可能为产单核李斯特菌中琥珀酸的生物合成提供一条可能的途径。使用产单核李斯特菌 EGD-e 的粗蛋白提取物,我们表明该菌株表现出 GABA 分流途径中两个主要酶反应的活性,即 GABA 转氨酶(GABA-AT)和琥珀酸半醛脱氢酶(SSDH)。鉴定了两个基因作为编码这些酶活性的候选基因,argD(GABA-AT)和 lmo0913(SSDH)。从缺乏功能正常的 argD 基因的突变体中制备的粗蛋白提取物显著降低了 GABA-AT 活性,而 lmo0913 突变体失去了所有可检测的 SSDH 活性。lmo0913 的缺失增加了 EGD-e 的酸耐受性,并显示出细胞内 GABA 的积累增加,表明该途径在该病原体在酸性条件下的存活中起着重要作用。这是在李斯特菌属中首次报道这种途径,它突出了代谢和酸耐受性之间的重要联系,并且还提出了一种可能的补偿途径,以部分克服李斯特菌不完全的三羧酸循环。