Suppr超能文献

自交综合征:研究植物形态适应遗传和进化基础的模型。

The selfing syndrome: a model for studying the genetic and evolutionary basis of morphological adaptation in plants.

机构信息

Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany.

出版信息

Ann Bot. 2011 Jun;107(9):1433-43. doi: 10.1093/aob/mcr023. Epub 2011 Feb 7.

Abstract

BACKGROUND

In angiosperm evolution, autogamously selfing lineages have been derived from outbreeding ancestors multiple times, and this transition is regarded as one of the most common evolutionary tendencies in flowering plants. In most cases, it is accompanied by a characteristic set of morphological and functional changes to the flowers, together termed the selfing syndrome. Two major areas that have changed during evolution of the selfing syndrome are sex allocation to male vs. female function and flower morphology, in particular flower (mainly petal) size and the distance between anthers and stigma.

SCOPE

A rich body of theoretical, taxonomic, ecological and genetic studies have addressed the evolutionary modification of these two trait complexes during or after the transition to selfing. Here, we review our current knowledge about the genetics and evolution of the selfing syndrome.

CONCLUSIONS

We argue that because of its frequent parallel evolution, the selfing syndrome represents an ideal model for addressing basic questions about morphological evolution and adaptation in flowering plants, but that realizing this potential will require the molecular identification of more of the causal genes underlying relevant trait variation.

摘要

背景

在被子植物进化过程中,自交的种系多次从异交祖先中衍生而来,这种转变被认为是开花植物中最常见的进化趋势之一。在大多数情况下,它伴随着花的一系列特征形态和功能的变化,这些变化共同被称为自交综合征。在自交综合征进化过程中发生变化的两个主要领域是性分配给雄性和雌性功能以及花形态,特别是花(主要是花瓣)大小和花药与柱头之间的距离。

范围

大量的理论、分类学、生态学和遗传学研究已经解决了在向自交过渡期间或之后这两个性状复合体的进化修饰。在这里,我们回顾了我们目前对自交综合征的遗传学和进化的了解。

结论

我们认为,由于其频繁的平行进化,自交综合征代表了一个解决关于开花植物形态进化和适应的基本问题的理想模型,但要实现这一潜力,需要分子鉴定更多与相关性状变异相关的因果基因。

相似文献

2
Standing genetic variation in a tissue-specific enhancer underlies selfing-syndrome evolution in Capsella.
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13911-13916. doi: 10.1073/pnas.1613394113. Epub 2016 Nov 14.
3
Genetics, evolution, and adaptive significance of the selfing syndrome in the genus Capsella.
Plant Cell. 2011 Sep;23(9):3156-71. doi: 10.1105/tpc.111.088237. Epub 2011 Sep 27.
4
Genetic architecture and adaptive significance of the selfing syndrome in Capsella.
Evolution. 2012 May;66(5):1360-74. doi: 10.1111/j.1558-5646.2011.01540.x. Epub 2012 Mar 3.
5
Evolutionary consequences of self-fertilization in plants.
Proc Biol Sci. 2013 Jun 7;280(1760):20130133. doi: 10.1098/rspb.2013.0133.
6
Cis-Regulatory Changes Associated with a Recent Mating System Shift and Floral Adaptation in Capsella.
Mol Biol Evol. 2015 Oct;32(10):2501-14. doi: 10.1093/molbev/msv169. Epub 2015 Aug 28.
7
Parallel evolution of morphological and genomic selfing syndromes accompany the breakdown of heterostyly.
New Phytol. 2024 Apr;242(1):302-316. doi: 10.1111/nph.19522. Epub 2024 Jan 12.
8
9
The selfing syndrome and beyond: diverse evolutionary consequences of mating system transitions in plants.
Philos Trans R Soc Lond B Biol Sci. 2022 Jul 18;377(1855):20200510. doi: 10.1098/rstb.2020.0510. Epub 2022 May 30.

引用本文的文献

3
Evaluating the roles of drift and selection in trait loss along an elevational gradient.
Evolution. 2025 Jul 18;79(7):1322-1333. doi: 10.1093/evolut/qpaf078.
4
Does the occurence of homostyly necessarily accompany the breakdown of heteromorphic incompatibility system?
Front Plant Sci. 2025 Feb 27;16:1402333. doi: 10.3389/fpls.2025.1402333. eCollection 2025.
5
Effects of mode of reproduction on genetic polymorphism and divergence in wild yams (Dioscoreaceae: ).
Plant Divers. 2024 Sep 25;47(1):136-147. doi: 10.1016/j.pld.2024.09.009. eCollection 2025 Jan.
7
2024: the year in review.
Proc Biol Sci. 2025 Jan;292(2039):20250065. doi: 10.1098/rspb.2025.0065. Epub 2025 Jan 29.
8
Pollination ecotypes and the origin of plant species.
Proc Biol Sci. 2025 Jan;292(2039):20242787. doi: 10.1098/rspb.2024.2787. Epub 2025 Jan 29.
9
Pollination efficiency and the evolution of sex allocation - diminishing returns matter.
New Phytol. 2025 Apr;246(1):39-46. doi: 10.1111/nph.20389. Epub 2025 Jan 23.
10
Mating systems and recombination landscape strongly shape genetic diversity and selection in wheat relatives.
Evol Lett. 2024 Aug 12;8(6):866-880. doi: 10.1093/evlett/qrae039. eCollection 2024 Dec.

本文引用的文献

1
FLORAL SEX ALLOCATION IN SEQUENTIALLY BLOOMING PLANTS.
Evolution. 1995 Feb;49(1):70-79. doi: 10.1111/j.1558-5646.1995.tb05959.x.
2
POSITIVE CORRELATIONS BETWEEN SELFING RATE AND POLLEN-OVULE RATIO WITHIN PLANT POPULATIONS.
Evolution. 1995 Feb;49(1):214-217. doi: 10.1111/j.1558-5646.1995.tb05973.x.
3
POLLEN-OVULE RATIOS: A CONSERVATIVE INDICATOR OF BREEDING SYSTEMS IN FLOWERING PLANTS.
Evolution. 1977 Mar;31(1):32-46. doi: 10.1111/j.1558-5646.1977.tb00979.x.
5
THE POPULATION GENETICS OF ADAPTATION: THE DISTRIBUTION OF FACTORS FIXED DURING ADAPTIVE EVOLUTION.
Evolution. 1998 Aug;52(4):935-949. doi: 10.1111/j.1558-5646.1998.tb01823.x.
7
THE EVOLUTION OF AUTOGAMY IN SPECIES OF THE MUSTARD GENUS LEAVENWORTHIA.
Evolution. 1977 Jun;31(2):265-281. doi: 10.1111/j.1558-5646.1977.tb01007.x.
9
POLLEN-OVULE RATIOS AND HERMAPHRODITE SEXUAL ALLOCATION STRATEGIES.
Evolution. 1984 Sep;38(5):1148-1151. doi: 10.1111/j.1558-5646.1984.tb00383.x.
10
Phylogenetic evidence for a flower size and number trade-off.
Am J Bot. 2007 Dec;94(12):2059-62. doi: 10.3732/ajb.94.12.2059.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验