Suppr超能文献

植物自交的进化后果。

Evolutionary consequences of self-fertilization in plants.

机构信息

Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada.

出版信息

Proc Biol Sci. 2013 Jun 7;280(1760):20130133. doi: 10.1098/rspb.2013.0133.

Abstract

The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in plants, yet only about 10-15% of flowering plants are predominantly selfing. To explain this phenomenon, Stebbins proposed that selfing may be an 'evolutionary dead end'. According to this hypothesis, transitions from outcrossing to selfing are irreversible, and selfing lineages suffer from an increased risk of extinction owing to a reduced potential for adaptation. Thus, although selfing can be advantageous in the short term, selfing lineages may be mostly short-lived owing to higher extinction rates. Here, we review recent results relevant to the 'dead-end hypothesis' of selfing and the maintenance of outcrossing over longer evolutionary time periods. In particular, we highlight recent results regarding diversification rates in self-incompatible and self-compatible taxa, and review evidence regarding the accumulation of deleterious mutations in selfing lineages. We conclude that while some aspects of the hypothesis of selfing as a dead end are supported by theory and empirical results, the evolutionary and ecological mechanisms remain unclear. We highlight the need for more studies on the effects of quantitative changes in outcrossing rates and on the potential for adaptation, particularly in selfing plants. In addition, there is growing evidence that transitions to selfing may themselves be drivers of speciation, and future studies of diversification and speciation should investigate this further.

摘要

从异交向自交的转变是植物中最常见的进化变化之一,但只有大约 10-15%的开花植物主要是自交的。为了解释这一现象,斯特宾斯提出自交可能是一个“进化死胡同”。根据这一假说,从异交向自交的转变是不可逆的,自交谱系由于适应潜力降低而面临更高的灭绝风险。因此,尽管自交在短期内可能是有利的,但由于更高的灭绝率,自交谱系可能大多是短命的。在这里,我们回顾了与自交的“死胡同假说”和更长进化时间内保持异交相关的最新结果。特别是,我们强调了关于自交和自交不亲和分类群中多样化率的最新结果,并回顾了自交谱系中有害突变积累的证据。我们的结论是,虽然该假说的某些方面得到了理论和经验结果的支持,但进化和生态机制仍不清楚。我们强调需要更多研究异交率的定量变化和适应潜力的影响,特别是在自交植物中。此外,越来越多的证据表明,向自交的转变本身可能是物种形成的驱动因素,未来对多样化和物种形成的研究应该进一步探讨这一点。

相似文献

1
Evolutionary consequences of self-fertilization in plants.
Proc Biol Sci. 2013 Jun 7;280(1760):20130133. doi: 10.1098/rspb.2013.0133.
2
Is self-fertilization an evolutionary dead end?
New Phytol. 2013 Apr;198(2):386-397. doi: 10.1111/nph.12182. Epub 2013 Feb 20.
6
The double edged sword: The demographic consequences of the evolution of self-fertilization.
Evolution. 2017 May;71(5):1178-1190. doi: 10.1111/evo.13222. Epub 2017 Mar 31.
7
The best of both worlds? A review of delayed selfing in flowering plants.
Am J Bot. 2018 Apr;105(4):641-655. doi: 10.1002/ajb2.1045. Epub 2018 Apr 6.
8
Experimental Evidence for the Negative Effects of Self-Fertilization on the Adaptive Potential of Populations.
Curr Biol. 2017 Jan 23;27(2):237-242. doi: 10.1016/j.cub.2016.11.015. Epub 2016 Dec 29.
9
Repeated evolution and reversibility of self-fertilization in the volvocine green algae.
Evolution. 2018 Feb;72(2):386-398. doi: 10.1111/evo.13394. Epub 2017 Nov 24.
10
Adaptation and maladaptation in selfing and outcrossing species: new mutations versus standing variation.
Evolution. 2013 Jan;67(1):225-40. doi: 10.1111/j.1558-5646.2012.01778.x. Epub 2012 Sep 7.

引用本文的文献

2
Variation in self-compatibility among genotypes and across ontogeny in a self-fertilizing vertebrate, .
Proc Biol Sci. 2025 Aug;292(2052):20250919. doi: 10.1098/rspb.2025.0919. Epub 2025 Aug 13.
3
Can ploidy changes propel the evolution of allogamy in a selfing species complex?
BMC Plant Biol. 2025 Aug 1;25(1):1011. doi: 10.1186/s12870-025-06868-1.
4
Spawning Asynchrony and Mixed Reproductive Strategies in a Common Mass Spawning Coral.
Ecol Evol. 2025 Jun 26;15(7):e71654. doi: 10.1002/ece3.71654. eCollection 2025 Jul.
5
Floral Biology, Breeding System and Conservation Implications for the Azorean Endemic (Campanulaceae).
Plants (Basel). 2025 Jun 10;14(12):1774. doi: 10.3390/plants14121774.
6
Self-Pollinated Types and Ecological Adaptations of the Desert Plant .
Plants (Basel). 2025 May 8;14(10):1410. doi: 10.3390/plants14101410.
7
Genomic signature and evolutionary history of completely cleistogamous lineages in the non-photosynthetic orchid .
Proc Biol Sci. 2025 May;292(2047):20250574. doi: 10.1098/rspb.2025.0574. Epub 2025 May 21.
8
Seed biology and regeneration niche of the threatened cold desert perennial A. Gray.
Front Plant Sci. 2025 May 5;16:1568951. doi: 10.3389/fpls.2025.1568951. eCollection 2025.
10
In 'hot' pursuit: exploring the evolutionary ecology of labial pits in boas and pythons.
Proc Biol Sci. 2025 Apr;292(2045):20250199. doi: 10.1098/rspb.2025.0199. Epub 2025 Apr 23.

本文引用的文献

2
MUTATIONAL MELTDOWNS IN SEXUAL POPULATIONS.
Evolution. 1995 Dec;49(6):1067-1080. doi: 10.1111/j.1558-5646.1995.tb04434.x.
4
BAKER'S LAW REVISITED: REPRODUCTIVE ASSURANCE IN A METAPOPULATION.
Evolution. 1998 Jun;52(3):657-668. doi: 10.1111/j.1558-5646.1998.tb03691.x.
5
QUANTITATIVE GENETICS IN PLANTS: THE EFFECT OF THE BREEDING SYSTEM ON GENETIC VARIABILITY.
Evolution. 1995 Oct;49(5):911-920. doi: 10.1111/j.1558-5646.1995.tb02326.x.
6
THE EVOLUTION OF SELF-FERTILIZATION AND INBREEDING DEPRESSION IN PLANTS. I. GENETIC MODELS.
Evolution. 1985 Jan;39(1):24-40. doi: 10.1111/j.1558-5646.1985.tb04077.x.
8
The Capsella rubella genome and the genomic consequences of rapid mating system evolution.
Nat Genet. 2013 Jul;45(7):831-5. doi: 10.1038/ng.2669. Epub 2013 Jun 9.
9
Secondary evolution of a self-incompatibility locus in the Brassicaceae genus Leavenworthia.
PLoS Biol. 2013;11(5):e1001560. doi: 10.1371/journal.pbio.1001560. Epub 2013 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验