Suppr超能文献

秀丽隐杆线虫与其微小寄生菌苏云金芽孢杆菌经实验共进化后,宿主-寄生虫的局部适应。

Host-parasite local adaptation after experimental coevolution of Caenorhabditis elegans and its microparasite Bacillus thuringiensis.

机构信息

Institute for Evolution and Biodiversity, Westphalian Wilhelms-University Muenster, Huefferstrasse 1, 48149 Muenster, Germany.

出版信息

Proc Biol Sci. 2011 Sep 22;278(1719):2832-9. doi: 10.1098/rspb.2011.0019. Epub 2011 Feb 9.

Abstract

Coevolving hosts and parasites can adapt to their local antagonist. In studies on natural populations, the observation of local adaptation patterns is thus often taken as indirect evidence for coevolution. Based on this approach, coevolution was previously inferred from an overall pattern of either parasite or host local adaptation. Many studies, however, failed to detect such a pattern. One explanation is that the studied system was not subject to coevolution. Alternatively, coevolution occurred, but remained undetected because it took different routes in different populations. In some populations, it is the host that is locally adapted, whereas in others it is the parasite, leading to the absence of an overall local adaptation pattern. Here, we test for overall as well as population-specific patterns of local adaptation using experimentally coevolved populations of the nematode Caenorhabditis elegans and its bacterial microparasite Bacillus thuringiensis. Furthermore, we assessed the importance of random interaction effects using control populations that evolved in the absence of the respective antagonist. Our results demonstrate that experimental coevolution produces distinct local adaptation patterns in different replicate populations, including host, parasite or absence of local adaptation. Our study thus provides experimental evidence of the predictions of the geographical mosaic theory of coevolution, i.e. that the interaction between parasite and host varies across populations.

摘要

共同进化的宿主和寄生虫可以适应它们的本地拮抗剂。因此,在对自然种群的研究中,观察到局部适应模式通常被视为共同进化的间接证据。基于这种方法,以前曾根据寄生虫或宿主的整体局部适应模式推断出共同进化。然而,许多研究未能检测到这种模式。一种解释是,所研究的系统不受共同进化的影响。或者,共同进化确实发生了,但由于它在不同种群中采取了不同的途径,因此仍然未被发现。在一些种群中,是宿主具有局部适应性,而在其他种群中则是寄生虫具有局部适应性,导致没有整体的局部适应模式。在这里,我们使用实验共同进化的线虫秀丽隐杆线虫及其细菌微寄生虫苏云金芽孢杆菌的种群来测试整体和种群特异性的局部适应模式。此外,我们使用在没有相应拮抗剂的情况下进化的对照种群来评估随机相互作用效应的重要性。我们的研究结果表明,实验共同进化会在不同的重复种群中产生不同的局部适应模式,包括宿主、寄生虫或缺乏局部适应。因此,我们的研究提供了实验证据,证明了共同进化的地理镶嵌理论的预测,即寄生虫和宿主之间的相互作用在不同种群中存在差异。

相似文献

1
Host-parasite local adaptation after experimental coevolution of Caenorhabditis elegans and its microparasite Bacillus thuringiensis.
Proc Biol Sci. 2011 Sep 22;278(1719):2832-9. doi: 10.1098/rspb.2011.0019. Epub 2011 Feb 9.
5
Host mating system and coevolutionary dynamics shape the evolution of parasite avoidance in Caenorhabditis elegans host populations.
Parasitology. 2018 May;145(6):724-730. doi: 10.1017/S0031182017000804. Epub 2017 Jun 28.
6
Host-parasite coevolution favours parasite genetic diversity and horizontal gene transfer.
J Evol Biol. 2013 Aug;26(8):1836-40. doi: 10.1111/jeb.12174. Epub 2013 Jul 19.
7
Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite.
Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7359-64. doi: 10.1073/pnas.1003113107. Epub 2010 Apr 5.
9
The genomic basis of Red Queen dynamics during rapid reciprocal host-pathogen coevolution.
Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):923-928. doi: 10.1073/pnas.1810402116. Epub 2018 Dec 31.
10
Experimental coevolution: rapid local adaptation by parasites depends on host mating system.
Am Nat. 2014 Aug;184 Suppl 1(0 1):S91-100. doi: 10.1086/676930. Epub 2014 Jul 17.

引用本文的文献

1
A Conceptual Disease Cycle Model to Link the Size of Past and Future Epidemics.
Ecol Evol. 2025 Jul 28;15(8):e71868. doi: 10.1002/ece3.71868. eCollection 2025 Aug.
5
Local Adaptation of Bacterial Symbionts within a Geographic Mosaic of Antibiotic Coevolution.
Appl Environ Microbiol. 2019 Nov 27;85(24). doi: 10.1128/AEM.01580-19. Print 2019 Dec 15.
7
Cross-Resistance: A Consequence of Bi-partite Host-Parasite Coevolution.
Insects. 2018 Feb 26;9(1):28. doi: 10.3390/insects9010028.
8
Experimental Evolution with Nematodes.
Genetics. 2017 Jun;206(2):691-716. doi: 10.1534/genetics.115.186288.
9
The Natural Biotic Environment of .
Genetics. 2017 May;206(1):55-86. doi: 10.1534/genetics.116.195511.

本文引用的文献

1
Local adaptation and host-parasite interactions.
Trends Ecol Evol. 1998 Jun 1;13(6):214-6. doi: 10.1016/s0169-5347(98)01358-5.
2
Sex against virulence: the coevolution of parasitic diseases.
Trends Ecol Evol. 1996 Feb;11(2):79-82. doi: 10.1016/0169-5347(96)81047-0.
3
Experimental evolution of local parasite maladaptation.
J Evol Biol. 2010 Jun 1;23(6):1195-205. doi: 10.1111/j.1420-9101.2010.01985.x. Epub 2010 Apr 8.
4
Variation between populations and local adaptation in acanthocephalan-induced parasite manipulation.
Evolution. 2010 Aug;64(8):2417-30. doi: 10.1111/j.1558-5646.2010.01006.x. Epub 2010 Apr 14.
6
Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite.
Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7359-64. doi: 10.1073/pnas.1003113107. Epub 2010 Apr 5.
7
How does spatial dispersal network affect the evolution of parasite local adaptation?
Evolution. 2010 Jun;64(6):1795-801. doi: 10.1111/j.1558-5646.2009.00937.x. Epub 2009 Dec 28.
9
Are adaptation costs necessary to build up a local adaptation pattern?
BMC Evol Biol. 2009 Aug 3;9:182. doi: 10.1186/1471-2148-9-182.
10
Role of coevolution in generating biological diversity: spatially divergent selection trajectories.
J Exp Bot. 2009;60(11):2957-70. doi: 10.1093/jxb/erp168. Epub 2009 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验