Department of Biomedical Engineering, College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
J Exp Biol. 2011 Mar 1;214(Pt 5):862-70. doi: 10.1242/jeb.051151.
Vestibular hair cell bundles in the inner ear contain a single kinocilium composed of a 9+2 microtubule structure. Kinocilia play a crucial role in transmitting movement of the overlying mass, otoconial membrane or cupula to the mechanotransducing portion of the hair cell bundle. Little is known regarding the mechanical deformation properties of the kinocilium. Using a force-deflection technique, we measured two important mechanical properties of kinocilia in the utricle of a turtle, Trachemys (Pseudemys) scripta elegans. First, we measured the stiffness of kinocilia with different heights. These kinocilia were assumed to be homogenous cylindrical rods and were modeled as both isotropic Euler-Bernoulli beams and transversely isotropic Timoshenko beams. Two mechanical properties of the kinocilia were derived from the beam analysis: flexural rigidity (EI) and shear rigidity (kGA). The Timoshenko model produced a better fit to the experimental data, predicting EI=10,400 pN μm(2) and kGA=247 pN. Assuming a homogenous rod, the shear modulus (G=1.9 kPa) was four orders of magnitude less than Young's modulus (E=14.1 MPa), indicating that significant shear deformation occurs within deflected kinocilia. When analyzed as an Euler-Bernoulli beam, which neglects translational shear, EI increased linearly with kinocilium height, giving underestimates of EI for shorter kinocilia. Second, we measured the rotational stiffness of the kinocilium insertion (κ) into the hair cell's apical surface. Following BAPTA treatment to break the kinocilial links, the kinocilia remained upright, and κ was measured as 177±47 pN μm rad(-1). The mechanical parameters we quantified are important for understanding how forces arising from head movement are transduced and encoded by hair cells.
内耳中的前庭毛细胞束包含一个由 9+2 微管结构组成的单个纤毛。纤毛在将上方质量、耳石膜或盖膜的运动传递到毛细胞束的机械转导部分方面起着至关重要的作用。关于纤毛的机械变形特性知之甚少。使用力-挠度技术,我们测量了海龟 Trachemys(Pseudemys)scripta elegans 内耳中纤毛的两个重要机械特性。首先,我们测量了不同高度的纤毛的刚度。这些纤毛被假设为均匀的圆柱形杆,并被建模为各向同性的 Euler-Bernoulli 梁和各向异性的 Timoshenko 梁。从梁分析中得出了纤毛的两个机械特性:弯曲刚度(EI)和剪切刚度(kGA)。Timoshenko 模型对实验数据的拟合更好,预测 EI=10,400 pN μm(2)和 kGA=247 pN。假设为均匀杆,剪切模量(G=1.9 kPa)比杨氏模量(E=14.1 MPa)小四个数量级,这表明在偏转的纤毛内会发生显著的剪切变形。当作为忽略平移剪切的 Euler-Bernoulli 梁进行分析时,EI 随纤毛高度线性增加,从而低估了较短纤毛的 EI。其次,我们测量了纤毛插入毛细胞顶端表面的旋转刚度(κ)。在用 BAPTA 处理破坏纤毛连接后,纤毛仍然直立,κ 测量为 177±47 pN μm rad(-1)。我们量化的机械参数对于理解源自头部运动的力如何被毛细胞转导和编码非常重要。