Pampaloni Francesco, Lattanzi Gianluca, Jonáš Alexandr, Surrey Thomas, Frey Erwin, Florin Ernst-Ludwig
*Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
Department of Medical Biochemistry, Biology, and Physics, Innovative Technologies for Signal Detection and Processing Center and Instituto Nazionale Fisica Nucleare, Università di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy.
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10248-10253. doi: 10.1073/pnas.0603931103. Epub 2006 Jun 26.
Microtubules are hollow cylindrical structures that constitute one of the three major classes of cytoskeletal filaments. On the mesoscopic length scale of a cell, their material properties are characterized by a single stiffness parameter, the persistence length l(p). Its value, in general, depends on the microscopic interactions between the constituent tubulin dimers and the architecture of the microtubule. Here, we use single-particle tracking methods combined with a fluctuation analysis to systematically study the dependence of l(p) on the total filament length L. Microtubules are grafted to a substrate with one end free to fluctuate in three dimensions. A fluorescent bead is attached proximally to the free tip and is used to record the thermal fluctuations of the microtubule's end. The position distribution functions obtained with this assay allow the precise measurement of l(p) for microtubules of different contour length L. Upon varying L between 2.6 and 47.5 mum, we find a systematic increase of l(p) from 110 to 5,035 mum. At the same time we verify that, for a given filament length, the persistence length is constant over the filament within the experimental accuracy. We interpret this length dependence as a consequence of a nonnegligible shear deflection determined by subnanometer relative displacement of adjacent protofilaments. Our results may shine new light on the function of microtubules as sophisticated nanometer-sized molecular machines and give a unified explanation of seemingly uncorrelated spreading of microtubules' stiffness previously reported in literature.
微管是中空的圆柱形结构,构成细胞骨架细丝的三大主要类别之一。在细胞的介观长度尺度上,它们的材料特性由单一的刚度参数——持久长度(l(p))来表征。一般来说,其值取决于组成微管蛋白二聚体之间的微观相互作用以及微管的结构。在这里,我们使用单粒子跟踪方法结合涨落分析来系统地研究(l(p))对细丝总长度(L)的依赖性。微管一端接枝到底物上,另一端可在三维空间中自由波动。在靠近自由端处附着一个荧光珠,用于记录微管末端的热涨落。通过该测定获得的位置分布函数允许精确测量不同轮廓长度(L)的微管的(l(p))。当(L)在(2.6)至(47.5)微米之间变化时,我们发现(l(p))从(110)微米系统地增加到(5035)微米。同时我们验证了,对于给定的细丝长度,在实验精度范围内,细丝上的持久长度是恒定的。我们将这种长度依赖性解释为相邻原纤维亚纳米级相对位移所决定的不可忽略的剪切挠度的结果。我们的结果可能为微管作为精密纳米级分子机器的功能提供新的见解,并对文献中先前报道的微管刚度看似不相关的扩展给出统一解释。