Suppr超能文献

嫁接微管的热涨落为长度依赖性持久长度提供了证据。

Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length.

作者信息

Pampaloni Francesco, Lattanzi Gianluca, Jonáš Alexandr, Surrey Thomas, Frey Erwin, Florin Ernst-Ludwig

机构信息

*Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.

Department of Medical Biochemistry, Biology, and Physics, Innovative Technologies for Signal Detection and Processing Center and Instituto Nazionale Fisica Nucleare, Università di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy.

出版信息

Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10248-10253. doi: 10.1073/pnas.0603931103. Epub 2006 Jun 26.

Abstract

Microtubules are hollow cylindrical structures that constitute one of the three major classes of cytoskeletal filaments. On the mesoscopic length scale of a cell, their material properties are characterized by a single stiffness parameter, the persistence length l(p). Its value, in general, depends on the microscopic interactions between the constituent tubulin dimers and the architecture of the microtubule. Here, we use single-particle tracking methods combined with a fluctuation analysis to systematically study the dependence of l(p) on the total filament length L. Microtubules are grafted to a substrate with one end free to fluctuate in three dimensions. A fluorescent bead is attached proximally to the free tip and is used to record the thermal fluctuations of the microtubule's end. The position distribution functions obtained with this assay allow the precise measurement of l(p) for microtubules of different contour length L. Upon varying L between 2.6 and 47.5 mum, we find a systematic increase of l(p) from 110 to 5,035 mum. At the same time we verify that, for a given filament length, the persistence length is constant over the filament within the experimental accuracy. We interpret this length dependence as a consequence of a nonnegligible shear deflection determined by subnanometer relative displacement of adjacent protofilaments. Our results may shine new light on the function of microtubules as sophisticated nanometer-sized molecular machines and give a unified explanation of seemingly uncorrelated spreading of microtubules' stiffness previously reported in literature.

摘要

微管是中空的圆柱形结构,构成细胞骨架细丝的三大主要类别之一。在细胞的介观长度尺度上,它们的材料特性由单一的刚度参数——持久长度(l(p))来表征。一般来说,其值取决于组成微管蛋白二聚体之间的微观相互作用以及微管的结构。在这里,我们使用单粒子跟踪方法结合涨落分析来系统地研究(l(p))对细丝总长度(L)的依赖性。微管一端接枝到底物上,另一端可在三维空间中自由波动。在靠近自由端处附着一个荧光珠,用于记录微管末端的热涨落。通过该测定获得的位置分布函数允许精确测量不同轮廓长度(L)的微管的(l(p))。当(L)在(2.6)至(47.5)微米之间变化时,我们发现(l(p))从(110)微米系统地增加到(5035)微米。同时我们验证了,对于给定的细丝长度,在实验精度范围内,细丝上的持久长度是恒定的。我们将这种长度依赖性解释为相邻原纤维亚纳米级相对位移所决定的不可忽略的剪切挠度的结果。我们的结果可能为微管作为精密纳米级分子机器的功能提供新的见解,并对文献中先前报道的微管刚度看似不相关的扩展给出统一解释。

相似文献

1
Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length.
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10248-10253. doi: 10.1073/pnas.0603931103. Epub 2006 Jun 26.
3
Nanomechanics of microtubules.
Phys Rev Lett. 2002 Dec 9;89(24):248101. doi: 10.1103/PhysRevLett.89.248101. Epub 2002 Nov 21.
4
Temperature-dependent elasticity of microtubules.
Langmuir. 2008 Jun 17;24(12):6176-81. doi: 10.1021/la800438q. Epub 2008 May 22.
5
Measuring the persistence length of MCF7 cell microtubules in vitro.
Biotechnol J. 2011 Jul;6(7):882-7. doi: 10.1002/biot.201000465. Epub 2011 Jun 10.
6
Flexural rigidity measurements of biopolymers using gliding assays.
J Vis Exp. 2012 Nov 9(69):50117. doi: 10.3791/50117.
7
Microtubule curvatures under perpendicular electric forces reveal a low persistence length.
Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):7941-6. doi: 10.1073/pnas.0704169105. Epub 2008 Mar 21.
8
Microtubule dynamics depart from the wormlike chain model.
Phys Rev Lett. 2008 Jan 18;100(2):028102. doi: 10.1103/PhysRevLett.100.028102. Epub 2008 Jan 15.
9
Cooperative lattice dynamics and anomalous fluctuations of microtubules.
Eur Biophys J. 2012 Feb;41(2):217-39. doi: 10.1007/s00249-011-0778-0. Epub 2011 Dec 16.
10
Measuring microtubule persistence length using a microtubule gliding assay.
Methods Cell Biol. 2013;115:13-25. doi: 10.1016/B978-0-12-407757-7.00002-5.

引用本文的文献

1
Form and function in biological filaments: a physicist's review.
Philos Trans A Math Phys Eng Sci. 2025 Sep 11;383(2304):20240253. doi: 10.1098/rsta.2024.0253.
2
Does GLUT4 Queue? A Mechanistic Mathematical Model for Insulin Response in Adipocytes.
Bull Math Biol. 2025 Sep 2;87(10):141. doi: 10.1007/s11538-025-01490-6.
4
Protein design of two-component tubular assemblies similar to cytoskeletons.
Nat Commun. 2025 Jul 22;16(1):6738. doi: 10.1038/s41467-025-62076-3.
5
Cellular mechanisms of traumatic brain injury.
NPJ Biol Phys Mech. 2025;2(1):16. doi: 10.1038/s44341-025-00020-8. Epub 2025 Jun 3.
6
Mechanical fatigue in microtubules.
Sci Rep. 2024 Nov 1;14(1):26336. doi: 10.1038/s41598-024-76409-7.
7
Mechanical coupling coordinates microtubule growth.
Elife. 2023 Dec 27;12:RP89467. doi: 10.7554/eLife.89467.
8
Mechanical coupling coordinates microtubule growth.
bioRxiv. 2023 Oct 17:2023.06.29.547092. doi: 10.1101/2023.06.29.547092.
9
Structural specializations of the sperm tail.
Cell. 2023 Jun 22;186(13):2880-2896.e17. doi: 10.1016/j.cell.2023.05.026. Epub 2023 Jun 15.
10
Approximate simulation of cortical microtubule models using dynamical graph grammars.
Phys Biol. 2023 Jul 7;20(5). doi: 10.1088/1478-3975/acdbfb.

本文引用的文献

1
Radial compression of microtubules and the mechanism of action of taxol and associated proteins.
Biophys J. 2005 Nov;89(5):3410-23. doi: 10.1529/biophysj.104.057679. Epub 2005 Aug 12.
2
Anisotropic elastic properties of microtubules.
Eur Phys J E Soft Matter. 2005 May;17(1):29-35. doi: 10.1140/epje/i2004-10102-5. Epub 2005 Apr 6.
3
Mechanical stress induced mechanism of microtubule catastrophes.
J Mol Biol. 2005 May 13;348(4):927-38. doi: 10.1016/j.jmb.2005.03.019.
4
Synchrotron X-ray diffraction study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions.
Phys Rev Lett. 2004 Nov 5;93(19):198104. doi: 10.1103/PhysRevLett.93.198104. Epub 2004 Nov 4.
5
Oscillation modes of microtubules.
Biol Cell. 2004 Dec;96(9):697-700. doi: 10.1016/j.biolcel.2004.09.002.
6
A bending mode analysis for growing microtubules: evidence for a velocity-dependent rigidity.
Biophys J. 2004 Oct;87(4):2723-36. doi: 10.1529/biophysj.103.038877.
7
Mechanical properties of microtubules explored using the finite elements method.
Chemphyschem. 2004 Feb 20;5(2):252-7. doi: 10.1002/cphc.200300799.
8
Transverse fluctuations of grafted polymers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 1):021801. doi: 10.1103/PhysRevE.69.021801. Epub 2004 Feb 9.
9
Resolving the molecular structure of microtubules under physiological conditions with scanning force microscopy.
Eur Biophys J. 2004 Aug;33(5):462-7. doi: 10.1007/s00249-003-0386-8. Epub 2004 Feb 5.
10
Kinks, rings, and rackets in filamentous structures.
Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12141-6. doi: 10.1073/pnas.1534600100. Epub 2003 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验