Suppr超能文献

皮肤和肌肉传入输入对人手运动感觉的贡献。

Contributions of skin and muscle afferent input to movement sense in the human hand.

机构信息

Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97006, USA.

出版信息

J Neurophysiol. 2011 Apr;105(4):1879-88. doi: 10.1152/jn.00201.2010. Epub 2011 Feb 9.

Abstract

In the stationary hand, static joint-position sense originates from multimodal somatosensory input (e.g., joint, skin, and muscle). In the moving hand, however, it is uncertain how movement sense arises from these different submodalities of proprioceptors. In contrast to static-position sense, movement sense includes multiple parameters such as motion detection, direction, joint angle, and velocity. Because movement sense is both multimodal and multiparametric, it is not known how different movement parameters are represented by different afferent submodalities. In theory, each submodality could redundantly represent all movement parameters, or, alternatively, different afferent submodalities could be tuned to distinctly different movement parameters. The study described in this paper investigated how skin input and muscle input each contributes to movement sense of the hand, in particular, to the movement parameters dynamic position and velocity. Healthy adult subjects were instructed to indicate with the left hand when they sensed the unseen fingers of the right hand being passively flexed at the metacarpophalangeal (MCP) joint through a previously learned target angle. The experimental approach was to suppress input from skin and/or muscle: skin input by anesthetizing the hand, and muscle input by unexpectedly extending the wrist to prevent MCP flexion from stretching the finger extensor muscle. Input from joint afferents was assumed not to play a significant role because the task was carried out with the MCP joints near their neutral positions. We found that, during passive finger movement near the neutral position in healthy adult humans, both skin and muscle receptors contribute to movement sense but qualitatively differently. Whereas skin input contributes to both dynamic position and velocity sense, muscle input may contribute only to velocity sense.

摘要

在静止的手中,静态关节位置感源于多模态体感输入(例如关节、皮肤和肌肉)。然而,在移动的手中,运动感觉如何从这些不同的本体感受器亚模式中产生尚不确定。与静态位置感不同,运动感觉包括运动检测、方向、关节角度和速度等多个参数。由于运动感觉是多模态和多参数的,因此尚不清楚不同的运动参数是由不同的传入亚模式如何表示的。从理论上讲,每个亚模式都可以冗余地表示所有运动参数,或者,不同的传入亚模式可以针对明显不同的运动参数进行调整。本文描述的研究调查了皮肤输入和肌肉输入如何各自有助于手部的运动感觉,特别是运动参数动态位置和速度。健康成年受试者被指示用左手指示,当他们感觉到看不见的右手手指在先前学习的目标角度下被动弯曲时,右手手指在掌指(MCP)关节处被被动弯曲。实验方法是抑制皮肤和/或肌肉的输入:通过麻醉手来抑制皮肤输入,通过意外伸展手腕来防止 MCP 弯曲,从而防止手指伸肌伸展来抑制肌肉输入。假设关节传入信息不会发挥重要作用,因为任务是在 MCP 关节接近中立位置的情况下进行的。我们发现,在健康成年人类手指在中立位置附近的被动运动中,皮肤和肌肉感受器都有助于运动感觉,但性质不同。皮肤输入有助于动态位置和速度感觉,而肌肉输入可能仅有助于速度感觉。

相似文献

1
Contributions of skin and muscle afferent input to movement sense in the human hand.
J Neurophysiol. 2011 Apr;105(4):1879-88. doi: 10.1152/jn.00201.2010. Epub 2011 Feb 9.
2
Vibrotactile stimulation of fast-adapting cutaneous afferents from the foot modulates proprioception at the ankle joint.
J Appl Physiol (1985). 2016 Apr 15;120(8):855-64. doi: 10.1152/japplphysiol.00810.2015. Epub 2016 Jan 28.
3
Muscular sense is attenuated when humans move.
J Physiol. 1998 Apr 15;508 ( Pt 2)(Pt 2):635-43. doi: 10.1111/j.1469-7793.1998.00635.x.
4
Responses to passive movement of receptors in joint, skin and muscle of the human hand.
J Physiol. 1988 Aug;402:347-61. doi: 10.1113/jphysiol.1988.sp017208.
7
Cutaneous afferents provide information about knee joint movements in humans.
J Physiol. 2001 Feb 15;531(Pt 1):289-97. doi: 10.1111/j.1469-7793.2001.0289j.x.
9
Effect of slow, small movement on the vibration-evoked kinesthetic illusion.
Exp Brain Res. 2005 Dec;167(3):324-34. doi: 10.1007/s00221-005-0034-x. Epub 2005 Aug 20.
10
Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand.
J Physiol. 1996 Nov 1;496 ( Pt 3)(Pt 3):857-71. doi: 10.1113/jphysiol.1996.sp021733.

引用本文的文献

1
Tactile contribution extends beyond exteroception during spatially guided finger movements.
Sci Rep. 2025 Apr 29;15(1):14959. doi: 10.1038/s41598-025-99503-w.
2
Local postural changes elicit extensive and diverse skin stretch around joints, on the trunk and the face.
J R Soc Interface. 2025 Feb;22(223):20240794. doi: 10.1098/rsif.2024.0794. Epub 2025 Feb 19.
3
Presynaptic gating of monkey proprioceptive signals for proper motor action.
Nat Commun. 2023 Oct 25;14(1):6537. doi: 10.1038/s41467-023-42077-w.
4
Comparing end-effector position and joint angle feedback for online robotic limb tracking.
PLoS One. 2023 Jun 8;18(6):e0286566. doi: 10.1371/journal.pone.0286566. eCollection 2023.
5
Proprioceptive sensitivity to imposed finger deflections.
J Neurophysiol. 2022 Feb 1;127(2):412-420. doi: 10.1152/jn.00513.2021. Epub 2022 Jan 12.
6
The impact of diabetic peripheral neuropathy on pinch proprioception.
Exp Brain Res. 2019 Dec;237(12):3165-3174. doi: 10.1007/s00221-019-05663-3. Epub 2019 Oct 4.
7
Fingertip-Coupled Spindle Signaling Does Not Contribute to Reduce Postural Sway Under Light Touch.
Front Physiol. 2019 Aug 22;10:1072. doi: 10.3389/fphys.2019.01072. eCollection 2019.
8
Toward Restoration of Normal Mechanics of Functional Hand Tasks Post-Stroke: Subject-Specific Approach to Reinforce Impaired Muscle Function.
IEEE Trans Neural Syst Rehabil Eng. 2019 Aug;27(8):1606-1616. doi: 10.1109/TNSRE.2019.2924208. Epub 2019 Jun 20.
9
Assessing proprioception: A critical review of methods.
J Sport Health Sci. 2016 Mar;5(1):80-90. doi: 10.1016/j.jshs.2014.10.004. Epub 2015 Feb 3.
10
Pinch aperture proprioception: reliability and feasibility study.
J Phys Ther Sci. 2018 May;30(5):734-740. doi: 10.1589/jpts.30.734. Epub 2018 May 8.

本文引用的文献

1
Where is your arm? Variations in proprioception across space and tasks.
J Neurophysiol. 2010 Jan;103(1):164-71. doi: 10.1152/jn.00494.2009. Epub 2009 Oct 28.
2
The kinaesthetic senses.
J Physiol. 2009 Sep 1;587(Pt 17):4139-46. doi: 10.1113/jphysiol.2009.175372. Epub 2009 Jul 6.
3
[Paralysis of the intrinsic muscles of the hand].
Chir Main. 2008 Feb;27(1):1-11. doi: 10.1016/j.main.2008.02.001. Epub 2008 Feb 12.
4
Muscle proprioceptive feedback and spinal networks.
Brain Res Bull. 2007 Jul 12;73(4-6):155-202. doi: 10.1016/j.brainresbull.2007.03.010. Epub 2007 Apr 17.
5
Cutaneous afferents provide a neuronal population vector that encodes the orientation of human ankle movements.
J Physiol. 2007 Apr 15;580(Pt. 2):649-58. doi: 10.1113/jphysiol.2006.123075. Epub 2007 Jan 25.
6
Motor commands contribute to human position sense.
J Physiol. 2006 Mar 15;571(Pt 3):703-10. doi: 10.1113/jphysiol.2005.103093. Epub 2006 Jan 26.
8
Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee.
J Neurophysiol. 2005 Sep;94(3):1699-706. doi: 10.1152/jn.00191.2005. Epub 2005 May 25.
9
Quantitative analyses of dynamic strain sensitivity in human skin mechanoreceptors.
J Neurophysiol. 2004 Dec;92(6):3233-43. doi: 10.1152/jn.00628.2004.
10
Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control.
J Neurophysiol. 2004 Nov;92(5):2802-10. doi: 10.1152/jn.00480.2004. Epub 2004 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验