Suppr超能文献

前庭神经核中的信息传递和检测阈值:单个神经元与群体编码。

Information transmission and detection thresholds in the vestibular nuclei: single neurons vs. population encoding.

机构信息

Department of Physiology, Aerospace Medical Research Unit, McGill University, Montréal, Québec, Canada.

出版信息

J Neurophysiol. 2011 Apr;105(4):1798-814. doi: 10.1152/jn.00910.2010. Epub 2011 Feb 9.

Abstract

Understanding how sensory neurons transmit information about relevant stimuli remains a major goal in neuroscience. Of particular relevance are the roles of neural variability and spike timing in neural coding. Peripheral vestibular afferents display differential variability that is correlated with the importance of spike timing; regular afferents display little variability and use a timing code to transmit information about sensory input. Irregular afferents, conversely, display greater variability and instead use a rate code. We studied how central neurons within the vestibular nuclei integrate information from both afferent classes by recording from a group of neurons termed vestibular only (VO) that are known to make contributions to vestibulospinal reflexes and project to higher-order centers. We found that, although individual central neurons had sensitivities that were greater than or equal to those of individual afferents, they transmitted less information. In addition, their velocity detection thresholds were significantly greater than those of individual afferents. This is because VO neurons display greater variability, which is detrimental to information transmission and signal detection. Combining activities from multiple VO neurons increased information transmission. However, the information rates were still much lower than those of equivalent afferent populations. Furthermore, combining responses from multiple VO neurons led to lower velocity detection threshold values approaching those measured from behavior (∼ 2.5 vs. 0.5-1°/s). Our results suggest that the detailed time course of vestibular stimuli encoded by afferents is not transmitted by VO neurons. Instead, they suggest that higher vestibular pathways must integrate information from central vestibular neuron populations to give rise to behaviorally observed detection thresholds.

摘要

理解感觉神经元如何传递有关相关刺激的信息仍然是神经科学的主要目标。神经变异性和尖峰时间在神经编码中的作用尤为重要。外周前庭传入显示出与尖峰时间重要性相关的差异变异性;规则传入显示出很小的变异性,并使用定时码来传递有关感觉输入的信息。相反,不规则传入显示出更大的变异性,而是使用速率码。我们通过记录一组称为前庭唯一(VO)的神经元来研究前庭核内的中枢神经元如何整合来自两种传入类别的信息,这些神经元已知对前庭脊髓反射有贡献,并投射到高级中枢。我们发现,尽管单个中枢神经元的敏感性大于或等于单个传入的敏感性,但它们传递的信息较少。此外,它们的速度检测阈值明显大于单个传入的阈值。这是因为 VO 神经元显示出更大的变异性,这不利于信息传输和信号检测。从多个 VO 神经元的活动中进行组合增加了信息传输。然而,信息率仍然远低于等效传入群体的信息率。此外,将来自多个 VO 神经元的响应结合起来会导致更低的速度检测阈值值接近从行为测量的值(∼2.5 与 0.5-1°/s)。我们的研究结果表明,传入神经编码的前庭刺激的详细时间过程不会通过 VO 神经元传递。相反,它们表明,较高的前庭途径必须整合来自中枢前庭神经元群体的信息,以产生行为观察到的检测阈值。

相似文献

1
Information transmission and detection thresholds in the vestibular nuclei: single neurons vs. population encoding.
J Neurophysiol. 2011 Apr;105(4):1798-814. doi: 10.1152/jn.00910.2010. Epub 2011 Feb 9.
2
Neural variability, detection thresholds, and information transmission in the vestibular system.
J Neurosci. 2007 Jan 24;27(4):771-81. doi: 10.1523/JNEUROSCI.4690-06.2007.
3
Self-motion evokes precise spike timing in the primate vestibular system.
Nat Commun. 2016 Oct 27;7:13229. doi: 10.1038/ncomms13229.
4
Long-term deficits in motion detection thresholds and spike count variability after unilateral vestibular lesion.
J Neurophysiol. 2014 Aug 15;112(4):870-89. doi: 10.1152/jn.00280.2014. Epub 2014 May 21.
5
Enhanced Activation of HCN Channels Reduces Excitability and Spike-Timing Regularity in Maturing Vestibular Afferent Neurons.
J Neurosci. 2019 Apr 10;39(15):2860-2876. doi: 10.1523/JNEUROSCI.1811-18.2019. Epub 2019 Jan 29.
8
Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig.
Exp Brain Res. 2006 Nov;175(2):256-67. doi: 10.1007/s00221-006-0544-1. Epub 2006 Jun 8.
9
Signal processing by vestibular nuclei neurons is dependent on the current behavioral goal.
Ann N Y Acad Sci. 2001 Oct;942:345-63. doi: 10.1111/j.1749-6632.2001.tb03759.x.
10
Differential central projections of vestibular afferents in pigeons.
J Comp Neurol. 1996 Mar 25;367(1):110-31. doi: 10.1002/(SICI)1096-9861(19960325)367:1<110::AID-CNE8>3.0.CO;2-6.

引用本文的文献

1
Multisensory coding of self-motion and its contribution to navigation.
Nat Rev Neurosci. 2025 Sep 15. doi: 10.1038/s41583-025-00970-x.
2
Restoring vestibular function during natural self-motion: Progress and challenges.
Elife. 2024 Dec 17;13:e99516. doi: 10.7554/eLife.99516.
3
Neural populations within macaque early vestibular pathways are adapted to encode natural self-motion.
PLoS Biol. 2024 Apr 30;22(4):e3002623. doi: 10.1371/journal.pbio.3002623. eCollection 2024 Apr.
4
Serotonin increases population coding of behaviorally relevant stimuli by enhancing responses of ON but not OFF-type sensory neurons.
Heliyon. 2023 Jul 14;9(7):e18315. doi: 10.1016/j.heliyon.2023.e18315. eCollection 2023 Jul.
5
Vestibular Contributions to Primate Neck Postural Muscle Activity during Natural Motion.
J Neurosci. 2023 Mar 29;43(13):2326-2337. doi: 10.1523/JNEUROSCI.1831-22.2023. Epub 2023 Feb 17.
6
The Neural Basis for Biased Behavioral Responses Evoked by Galvanic Vestibular Stimulation in Primates.
J Neurosci. 2023 Mar 15;43(11):1905-1919. doi: 10.1523/JNEUROSCI.0987-22.2023. Epub 2023 Feb 2.
7
How Peripheral Vestibular Damage Affects Velocity Storage: a Causative Explanation.
J Assoc Res Otolaryngol. 2022 Aug;23(4):551-566. doi: 10.1007/s10162-022-00853-3. Epub 2022 Jun 29.
9
Challenges to the Vestibular System in Space: How the Brain Responds and Adapts to Microgravity.
Front Neural Circuits. 2021 Nov 3;15:760313. doi: 10.3389/fncir.2021.760313. eCollection 2021.
10
The neural basis for violations of Weber's law in self-motion perception.
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2025061118.

本文引用的文献

1
Coding of time-varying signals in spike trains of linear and half-wave rectifying neurons.
Network. 1996;7(1):61-85. doi: 10.1080/0954898X.1996.11978655.
2
Recoding of sensory information across the retinothalamic synapse.
J Neurosci. 2010 Oct 13;30(41):13567-77. doi: 10.1523/JNEUROSCI.0910-10.2010.
3
Spike timing and information transmission at retinogeniculate synapses.
J Neurosci. 2010 Oct 13;30(41):13558-66. doi: 10.1523/JNEUROSCI.0909-10.2010.
4
Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex.
Nature. 2010 Jul 1;466(7302):123-7. doi: 10.1038/nature09086.
5
Decorrelated neuronal firing in cortical microcircuits.
Science. 2010 Jan 29;327(5965):584-7. doi: 10.1126/science.1179867.
6
Direction discrimination thresholds of vestibular and cerebellar nuclei neurons.
J Neurosci. 2010 Jan 13;30(2):439-48. doi: 10.1523/JNEUROSCI.3192-09.2010.
7
Responses of ventral posterior thalamus neurons to three-dimensional vestibular and optic flow stimulation.
J Neurophysiol. 2010 Feb;103(2):817-26. doi: 10.1152/jn.00729.2009. Epub 2009 Dec 2.
8
Attention improves performance primarily by reducing interneuronal correlations.
Nat Neurosci. 2009 Dec;12(12):1594-600. doi: 10.1038/nn.2439. Epub 2009 Nov 15.
9
Preserving information in neural transmission.
J Neurosci. 2009 May 13;29(19):6207-16. doi: 10.1523/JNEUROSCI.3701-08.2009.
10
Different neural strategies for multimodal integration: comparison of two macaque monkey species.
Exp Brain Res. 2009 May;195(1):45-57. doi: 10.1007/s00221-009-1751-3. Epub 2009 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验