Suppr超能文献

体内对扰动的敏感性意味着高噪声,并表明皮层中的速率编码。

Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex.

机构信息

Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.

出版信息

Nature. 2010 Jul 1;466(7302):123-7. doi: 10.1038/nature09086.

Abstract

It is well known that neural activity exhibits variability, in the sense that identical sensory stimuli produce different responses, but it has been difficult to determine what this variability means. Is it noise, or does it carry important information-about, for example, the internal state of the organism? Here we address this issue from the bottom up, by asking whether small perturbations to activity in cortical networks are amplified. Based on in vivo whole-cell patch-clamp recordings in rat barrel cortex, we find that a perturbation consisting of a single extra spike in one neuron produces approximately 28 additional spikes in its postsynaptic targets. We also show, using simultaneous intra- and extracellular recordings, that a single spike in a neuron produces a detectable increase in firing rate in the local network. Theoretical analysis indicates that this amplification leads to intrinsic, stimulus-independent variations in membrane potential of the order of +/-2.2-4.5 mV-variations that are pure noise, and so carry no information at all. Therefore, for the brain to perform reliable computations, it must either use a rate code, or generate very large, fast depolarizing events, such as those proposed by the theory of synfire chains. However, in our in vivo recordings, we found that such events were very rare. Our findings are thus consistent with the idea that cortex is likely to use primarily a rate code.

摘要

众所周知,神经活动表现出可变性,即相同的感觉刺激会产生不同的反应,但很难确定这种可变性意味着什么。它是噪声,还是携带了重要信息——例如,关于生物体内部状态的信息?在这里,我们从底层开始解决这个问题,通过询问皮质网络中活动的小干扰是否会被放大。基于大鼠皮层的体内全细胞膜片钳记录,我们发现一个神经元中的单个额外尖峰产生了大约 28 个额外的突触后靶点尖峰。我们还使用同时的细胞内和细胞外记录表明,神经元中的单个尖峰会导致局部网络中可检测到的发射率增加。理论分析表明,这种放大导致膜电位的固有、刺激无关的变化,幅度约为 +/-2.2-4.5 mV-这种变化是纯噪声,因此根本没有携带任何信息。因此,为了使大脑能够进行可靠的计算,它必须使用速率码,或者产生非常大的、快速去极化的事件,如突触链理论所提出的事件。然而,在我们的体内记录中,我们发现这样的事件非常罕见。因此,我们的发现与皮质层可能主要使用速率码的观点是一致的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2278/2898896/e8c0541e8a27/nihms-196781-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验