Department of Sociology, Princeton University, Princeton, NJ, USA.
Demography. 2010 Nov;47(4):1053-77. doi: 10.1007/BF03213739.
Multistate life table methods are often used to estimate the proportion of remaining life that individuals can expect to spend in various states, such as healthy and unhealthy states. Sullivan's method is commonly used when panels containing data on transitions are unavailable and true multistate tables cannot be generated. Sullivan's method requires only cross-sectional mortality data and cross-sectional data indicating prevalence in states of interest. Such data often come from sample surveys, which are widely available. Although the data requirements for Sullivan's method are minimal, the method is limited in its ability to produce estimates for subpopulations because of limited disaggregation of data in cross-sectional mortality files and small cell sizes in aggregated survey data. In this article, we develop, test, and demonstrate a method that adapts Sullivan's approach to allow the inclusion of covariates in producing interval estimates of state expectancies for any desired subpopulation that can be specified in the cross-sectional prevalence data. The method involves a three-step process: (1) using Gibbs sampling to sample parameters from a bivariate regression model; (2) using ecological inference for producing transition probability matrices from the Gibbs samples; (3) using standard multistate calculations to convert the transition probability matrices into multistate life tables.
多状态生命表方法常用于估计个体在不同状态(如健康和不健康状态)中预期剩余寿命的比例。当没有包含转移数据的面板且无法生成真实的多状态表时,通常使用沙利文方法。沙利文方法仅需要横截面死亡率数据和表示感兴趣状态流行率的横截面数据。此类数据通常来自广泛可用的抽样调查。尽管沙利文方法的数据要求最低,但由于横截面死亡率文件中数据的有限分解和汇总调查数据中的小单元格大小,该方法在为子群体生成估计值方面受到限制。在本文中,我们开发、测试并展示了一种方法,该方法调整了沙利文的方法,以允许在从贝叶斯抽样中抽样参数的过程中包含协变量,从双变量回归模型;(2)使用生态推理从 Gibbs 样本生成转移概率矩阵;(3)使用标准的多状态计算将转移概率矩阵转换为多状态生命表。