Suppr超能文献

用于体内无创伤性成像淀粉样蛋白形成的 FRET 传感器。

A FRET sensor for non-invasive imaging of amyloid formation in vivo.

机构信息

Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (U.K.).

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (U.K.).

出版信息

Chemphyschem. 2011 Feb 25;12(3):673-680. doi: 10.1002/cphc.201000996. Epub 2011 Feb 9.

Abstract

Misfolding and aggregation of amyloidogenic polypeptides lie at the root of many neurodegenerative diseases. Whilst protein aggregation can be readily studied in vitro by established biophysical techniques, direct observation of the nature and kinetics of aggregation processes taking place in vivo is much more challenging. We describe here, however, a Förster resonance energy transfer sensor that permits the aggregation kinetics of amyloidogenic proteins to be quantified in living systems by exploiting our observation that amyloid assemblies can act as energy acceptors for variants of fluorescent proteins. The observed lifetime reduction can be attributed to fluorescence energy transfer to intrinsic energy states associated with the growing amyloid species. Indeed, for a-synuclein, a protein whose aggregation is linked to Parkinson's disease, we have used this sensor to follow the kinetics of the self-association reactions taking place in vitro and in vivo and to reveal the nature of the ensuing aggregated species. Experiments were conducted in vitro, in cells in culture and in living Caenorhabditis elegans. For the latter the readout correlates directly with the appearance of a toxic phenotype. The ability to measure the appearance and development of pathogenic amyloid species in a living animal and the ability to relate such data to similar processes observed in vitro provides a powerful new tool in the study of the pathology of the family of misfolding disorders. Our study confirms the importance of the molecular environment in which aggregation reactions take place, highlighting similarities as well as differences between the processes occurring in vitro and in vivo, and their significance for defining the molecular physiology of the diseases with which they are associated.

摘要

淀粉样多肽的错误折叠和聚集是许多神经退行性疾病的根源。虽然蛋白质聚集可以通过已建立的生物物理技术在体外进行研究,但直接观察体内发生的聚集过程的性质和动力学要困难得多。然而,我们在这里描述了一种荧光共振能量转移传感器,该传感器利用我们的观察结果,即淀粉样体可以作为荧光蛋白变体的能量受体,从而可以通过活系统来量化淀粉样蛋白的聚集动力学。观察到的寿命缩短可归因于荧光能量转移到与生长中的淀粉样物质相关的固有能量状态。事实上,对于与帕金森病相关的聚集蛋白α-突触核蛋白,我们已经使用该传感器来跟踪在体外和体内发生的自缔合反应的动力学,并揭示随之而来的聚集物质的性质。实验在体外、培养的细胞中和活体秀丽隐杆线虫中进行。对于后者,读数与毒性表型的出现直接相关。在活体动物中测量致病性淀粉样物质的出现和发展并将此类数据与体外观察到的类似过程相关联的能力为研究错误折叠疾病家族的病理学提供了一种强大的新工具。我们的研究证实了聚集反应发生的分子环境的重要性,突出了体外和体内发生的过程之间的相似性和差异,以及它们对定义与其相关的疾病的分子生理学的意义。

相似文献

1
A FRET sensor for non-invasive imaging of amyloid formation in vivo.
Chemphyschem. 2011 Feb 25;12(3):673-680. doi: 10.1002/cphc.201000996. Epub 2011 Feb 9.
2
Towards multiparametric fluorescent imaging of amyloid formation: studies of a YFP model of alpha-synuclein aggregation.
J Mol Biol. 2010 Jan 22;395(3):627-42. doi: 10.1016/j.jmb.2009.10.066. Epub 2009 Nov 3.
7
High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein.
Biophys Chem. 2007 May;127(3):155-64. doi: 10.1016/j.bpc.2007.01.008. Epub 2007 Feb 1.
8
Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged alpha-synuclein.
Nat Methods. 2007 Apr;4(4):345-51. doi: 10.1038/nmeth1026. Epub 2007 Mar 11.
9
Fluorescence resonance energy transfer-based stoichiometry in living cells.
Biophys J. 2002 Dec;83(6):3652-64. doi: 10.1016/S0006-3495(02)75365-4.
10
Lipid-dependent GPCR dimerization.
Methods Cell Biol. 2013;117:341-57. doi: 10.1016/B978-0-12-408143-7.00018-9.

引用本文的文献

1
Mechanisms of Alpha-Synuclein-Seeded Aggregation in Neurons Revealed by Fluorescence Lifetime Imaging.
ACS Chem Neurosci. 2025 Jun 4;16(11):2128-2140. doi: 10.1021/acschemneuro.5c00236. Epub 2025 May 27.
2
A safety mechanism enables tissue-specific resistance to protein aggregation during aging in C. elegans.
PLoS Biol. 2023 Sep 14;21(9):e3002284. doi: 10.1371/journal.pbio.3002284. eCollection 2023 Sep.
4
Fӧrster resonance energy transfer analysis of amyloid state of proteins.
BBA Adv. 2022 Oct 23;2:100059. doi: 10.1016/j.bbadva.2022.100059. eCollection 2022.
5
Monitoring α-synuclein aggregation.
Neurobiol Dis. 2023 Jan;176:105966. doi: 10.1016/j.nbd.2022.105966. Epub 2022 Dec 15.
6
Dissecting aggregation and seeding dynamics of α-Syn polymorphs using the phasor approach to FLIM.
Commun Biol. 2022 Dec 8;5(1):1345. doi: 10.1038/s42003-022-04289-6.
8
Protein Fibrillation under Crowded Conditions.
Biomolecules. 2022 Jul 6;12(7):950. doi: 10.3390/biom12070950.
9
A FRET-based method for monitoring structural transitions in protein self-organization.
Cell Rep Methods. 2022 Mar 28;2(3):100184. doi: 10.1016/j.crmeth.2022.100184.
10
Exploiting flow cytometry for the unbiased quantification of protein inclusions in Caenorhabditis elegans.
J Neurochem. 2022 May;161(3):281-292. doi: 10.1111/jnc.15591. Epub 2022 Mar 2.

本文引用的文献

1
HomoFRET fluorescence anisotropy imaging as a tool to study molecular self-assembly in live cells.
Chemphyschem. 2011 Feb 25;12(3):500-9. doi: 10.1002/cphc.201000833. Epub 2010 Dec 29.
2
Catalytic and chaperone-like functions in an intrinsically disordered protein associated with desiccation tolerance.
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16084-9. doi: 10.1073/pnas.1006276107. Epub 2010 Aug 30.
3
Quantitative imaging of human red blood cells infected with Plasmodium falciparum.
Biophys J. 2010 Aug 4;99(3):953-60. doi: 10.1016/j.bpj.2010.04.065.
4
Biophotonic techniques for the study of malaria-infected red blood cells.
Med Biol Eng Comput. 2010 Oct;48(10):1055-63. doi: 10.1007/s11517-010-0668-0. Epub 2010 Jul 27.
5
Structural properties and dynamic behavior of nonfibrillar oligomers formed by PrP(106-126).
J Am Chem Soc. 2010 Jun 9;132(22):7684-95. doi: 10.1021/ja100431q.
7
Lysosomal degradation of alpha-synuclein in vivo.
J Biol Chem. 2010 Apr 30;285(18):13621-9. doi: 10.1074/jbc.M109.074617. Epub 2010 Mar 3.
8
A causative link between the structure of aberrant protein oligomers and their toxicity.
Nat Chem Biol. 2010 Feb;6(2):140-7. doi: 10.1038/nchembio.283. Epub 2010 Jan 10.
9
A method to unmix multiple fluorophores in microscopy images with minimal a priori information.
Opt Express. 2009 Dec 7;17(25):22747-60. doi: 10.1364/OE.17.022747.
10
Towards multiparametric fluorescent imaging of amyloid formation: studies of a YFP model of alpha-synuclein aggregation.
J Mol Biol. 2010 Jan 22;395(3):627-42. doi: 10.1016/j.jmb.2009.10.066. Epub 2009 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验