Suppr超能文献

选择性分类提高非理想条件下肌电控制的鲁棒性。

Selective classification for improved robustness of myoelectric control under nonideal conditions.

机构信息

Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, Canada.

出版信息

IEEE Trans Biomed Eng. 2011 Jun;58(6):1698-705. doi: 10.1109/TBME.2011.2113182. Epub 2011 Feb 10.

Abstract

Recent literature in pattern recognition-based myoelectric control has highlighted a disparity between classification accuracy and the usability of upper limb prostheses. This paper suggests that the conventionally defined classification accuracy may be idealistic and may not reflect true clinical performance. Herein, a novel myoelectric control system based on a selective multiclass one-versus-one classification scheme, capable of rejecting unknown data patterns, is introduced. This scheme is shown to outperform nine other popular classifiers when compared using conventional classification accuracy as well as a form of leave-one-out analysis that may be more representative of real prosthetic use. Additionally, the classification scheme allows for real-time, independent adjustment of individual class-pair boundaries making it flexible and intuitive for clinical use.

摘要

基于模式识别的肌电控制的最新文献强调了分类准确性和上肢假肢可用性之间的差距。本文认为,传统定义的分类准确性可能是理想化的,并不反映真实的临床性能。本文提出了一种基于选择性多类一对一分类方案的新型肌电控制系统,能够拒绝未知数据模式。与其他九种流行的分类器相比,该方案在使用传统分类准确性和更能代表实际假肢使用的一种留一法分析时,表现更优。此外,分类方案允许实时、独立地调整各个类对边界,使其在临床使用中具有灵活性和直观性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验