Suppr超能文献

基于极限学习的自适应稀疏表示的耐电极移位肌电运动模式分类

Electrode-shift Tolerant Myoelectric Movement-pattern Classification using Extreme Learning for Adaptive Sparse Representations.

作者信息

Betthauser Joseph L, Osborn Luke E, Kaliki Rahul R, Thakor Nitish V

机构信息

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.

出版信息

IEEE Biomed Circuits Syst Conf. 2017 Oct;2017. doi: 10.1109/biocas.2017.8325201. Epub 2018 Mar 29.

Abstract

Myoelectric signal patterns can be used to predict the intended movements of amputees for prosthesis activation. Real-world prosthesis use introduces a variety of unpredictable conditional influences on these patterns, hindering the performance of classification algorithms and potentially leading to device abandonment. We have discovered a state-of-the-art classification method which is significantly more tolerant to these conditional influences. In our prior work, we presented a robust sparsity-based adaptive classification method that is tolerant to pattern deviations resulting from untrained limb positions and the prosthesis load. Herein, we demonstrate that this method is tolerant to the shifting or misalignment of the contact-electrode array which occurs during prosthesis use. We demonstrate the robustness of this approach in untrained electrode-site locations for amputee and able-bodied subjects, and report significant performance improvements over conventional myoelectric pattern recognition approaches. By showing that a single, unified method is robust across a variety of real-world condition spaces, clinicians are more likely to incorporate this method into myoelectric prosthesis controllers, resulting in improved utility and increased adoption among amputee users.

摘要

肌电信号模式可用于预测截肢者激活假肢的预期动作。现实世界中使用假肢会对这些模式产生各种不可预测的条件影响,这会妨碍分类算法的性能,并可能导致设备被弃用。我们发现了一种先进的分类方法,该方法对这些条件影响的耐受性要强得多。在我们之前的工作中,我们提出了一种基于稳健稀疏性的自适应分类方法,该方法能够耐受因未训练的肢体位置和假肢负载而导致的模式偏差。在此,我们证明该方法能够耐受在假肢使用过程中发生的接触电极阵列的移位或未对准。我们展示了这种方法在截肢者和健全受试者未训练电极部位位置的稳健性,并报告了与传统肌电模式识别方法相比显著的性能提升。通过表明单一、统一的方法在各种现实世界条件空间中都很稳健,临床医生更有可能将这种方法纳入肌电假肢控制器,从而提高实用性并增加截肢者用户的采用率。

相似文献

5
Position Identification for Robust Myoelectric Control Against Electrode Shift.针对电极移位的稳健肌电控制的位置识别。
IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):3121-3128. doi: 10.1109/TNSRE.2020.3038374. Epub 2021 Jan 28.
6
Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis.闭环多幅度控制提高肌电假肢的鲁棒性和灵活性。
IEEE Trans Neural Syst Rehabil Eng. 2020 Feb;28(2):498-507. doi: 10.1109/TNSRE.2019.2959714. Epub 2019 Dec 13.

本文引用的文献

7
Fast l₁-minimization algorithms for robust face recognition.快速 l₁-最小化算法用于鲁棒人脸识别。
IEEE Trans Image Process. 2013 Aug;22(8):3234-46. doi: 10.1109/TIP.2013.2262292. Epub 2013 May 13.
10
Classification of simultaneous movements using surface EMG pattern recognition.基于表面肌电信号模式识别的同步运动分类。
IEEE Trans Biomed Eng. 2013 May;60(5):1250-8. doi: 10.1109/TBME.2012.2232293. Epub 2012 Dec 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验