Suppr超能文献

基于置信度的拒绝策略提高模式识别肌电控制性能。

Confidence-based rejection for improved pattern recognition myoelectric control.

机构信息

Institute of Biomedical Engineering, University of NewBrunswick, Fredericton NBE3B 5A3, Canada.

出版信息

IEEE Trans Biomed Eng. 2013 Jun;60(6):1563-70. doi: 10.1109/TBME.2013.2238939. Epub 2013 Jan 10.

Abstract

This study describes a novel myoelectric control scheme that is capable of motion rejection. As an extension of the commonly used linear discriminant analysis (LDA), this system generates a confidence score for each decision, providing the ability to reject those with a score below a selected threshold. The thresholds are class-specific and affect only the rejection characteristics of the associated class. Furthermore, because the rejection stage is implemented using the outputs of the LDA, the active motion classification accuracy of the proposed system is shown to outperform that of the LDA for all values of rejection threshold. The proposed scheme was compared to a baseline LDA-based pattern recognition system using a real-time Fitts' law-based target acquisition task. The use of velocity-based myoelectric control using the rejection classifier is shown to obey Fitts' law, producing linear regression fittings with high coefficients of determination (R(2) > 0.943). Significantly higher (p < 0.001) throughput, path efficiency, and completion rates were observed with the rejection-capable system for both able-bodied and amputee subjects.

摘要

本研究描述了一种新颖的肌电控制方案,能够实现运动排斥。作为常用的线性判别分析 (LDA) 的扩展,该系统为每个决策生成置信得分,从而能够拒绝得分低于选定阈值的决策。这些阈值是特定于类别的,仅影响相关类别的排斥特性。此外,由于排斥阶段是使用 LDA 的输出实现的,因此所提出的系统的主动运动分类准确性被证明优于所有排斥阈值的 LDA。该方案使用基于实时 Fitts 定律的目标获取任务,与基于 LDA 的基线模式识别系统进行了比较。使用排斥分类器的基于速度的肌电控制符合 Fitts 定律,产生具有高确定系数 (R(2) > 0.943) 的线性回归拟合。对于健全人和截肢者,具有排斥能力的系统观察到更高的吞吐量、路径效率和完成率(p < 0.001)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验