Suppr超能文献

中风后个体时间步态参数的自动检测

Automatic detection of temporal gait parameters in poststroke individuals.

作者信息

Lopez-Meyer Paulo, Fulk George D, Sazonov Edward S

机构信息

Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 35487-0286, USA.

出版信息

IEEE Trans Inf Technol Biomed. 2011 Jul;15(4):594-601. doi: 10.1109/TITB.2011.2112773. Epub 2011 Feb 10.

Abstract

Approximately one-third of people who recover from a stroke require some form of assistance to walk. Repetitive task-oriented rehabilitation interventions have been shown to improve motor control and function in people with stroke. Our long-term goal is to design and test an intensive task-oriented intervention that will utilize the two primary components of constrained-induced movement therapy: massed, task-oriented training and behavioral methods to increase use of the affected limb in the real world. The technological component of the intervention is based on a wearable footwear-based sensor system that monitors relative activity levels, functional utilization, and gait parameters of affected and unaffected lower extremities. The purpose of this study is to describe a methodology to automatically identify temporal gait parameters of poststroke individuals to be used in assessment of functional utilization of the affected lower extremity as a part of behavior enhancing feedback. An algorithm accounting for intersubject variability is capable of achieving estimation error in the range of 2.6-18.6% producing comparable results for healthy and poststroke subjects. The proposed methodology is based on inexpensive and user-friendly technology that will enable research and clinical applications for rehabilitation of people who have experienced a stroke.

摘要

约三分之一从中风恢复过来的人需要某种形式的辅助才能行走。以重复性任务为导向的康复干预已被证明能改善中风患者的运动控制和功能。我们的长期目标是设计并测试一种强化的以任务为导向的干预措施,该措施将利用强制性诱导运动疗法的两个主要组成部分:集中的、以任务为导向的训练以及行为方法,以增加在现实世界中患侧肢体的使用。该干预措施的技术组件基于一种基于可穿戴鞋类的传感器系统,该系统可监测患侧和未患侧下肢的相对活动水平、功能利用情况和步态参数。本研究的目的是描述一种方法,用于自动识别中风后个体的时间步态参数,作为行为增强反馈的一部分,用于评估患侧下肢的功能利用情况。一种考虑个体间变异性的算法能够实现2.6%-18.6%范围内的估计误差,对健康受试者和中风后受试者产生可比的结果。所提出的方法基于廉价且用户友好的技术,这将使中风患者康复的研究和临床应用成为可能。

相似文献

1
Automatic detection of temporal gait parameters in poststroke individuals.
IEEE Trans Inf Technol Biomed. 2011 Jul;15(4):594-601. doi: 10.1109/TITB.2011.2112773. Epub 2011 Feb 10.
2
A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry.
IEEE Trans Inf Technol Biomed. 2010 Sep;14(5):1180-7. doi: 10.1109/TITB.2010.2047402. Epub 2010 Apr 5.
3
On-shoe wearable sensors for gait and turning assessment of patients with Parkinson's disease.
IEEE Trans Biomed Eng. 2013 Jan;60(1):155-8. doi: 10.1109/TBME.2012.2227317.
4
Stumble detection and classification for an intelligent transfemoral prosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:511-4. doi: 10.1109/IEMBS.2010.5626021.
5
Automatic recognition of postures and activities in stroke patients.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2200-3. doi: 10.1109/IEMBS.2009.5334908.
6
A comparison of algorithms for body-worn sensor-based spatiotemporal gait parameters to the GAITRite electronic walkway.
J Appl Biomech. 2012 Jul;28(3):349-55. doi: 10.1123/jab.28.3.349. Epub 2011 Nov 14.
7
Computational intelligent gait-phase detection system to identify pathological gait.
IEEE Trans Inf Technol Biomed. 2010 Sep;14(5):1173-9. doi: 10.1109/TITB.2010.2058813. Epub 2010 Aug 26.
8
Automatic detection, extraction and analysis of unrestrained gait using a wearable sensor system.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:2034-7. doi: 10.1109/EMBC.2015.7318786.
9
Quasi real-time gait event detection using shank-attached gyroscopes.
Med Biol Eng Comput. 2011 Jun;49(6):707-12. doi: 10.1007/s11517-011-0736-0. Epub 2011 Jan 26.
10
A remote quantitative Fugl-Meyer assessment framework for stroke patients based on wearable sensor networks.
Comput Methods Programs Biomed. 2016 May;128:100-10. doi: 10.1016/j.cmpb.2016.02.012. Epub 2016 Mar 2.

引用本文的文献

2
Restoring Somatotopic Sensory Feedback in Lower Limb Amputees through Noninvasive Nerve Stimulation.
Cyborg Bionic Syst. 2025 Apr 29;6:0243. doi: 10.34133/cbsystems.0243. eCollection 2025.
3
DeepLabCut custom-trained model and the refinement function for gait analysis.
Sci Rep. 2025 Jan 18;15(1):2364. doi: 10.1038/s41598-025-85591-1.
5
Insole Pressure Sensors to Assess Post-Stroke Gait.
Ann Rehabil Med. 2024 Feb;48(1):42-49. doi: 10.5535/arm.23064. Epub 2024 Jan 11.
6
Insole Systems for Disease Diagnosis and Rehabilitation: A Review.
Biosensors (Basel). 2023 Aug 21;13(8):833. doi: 10.3390/bios13080833.
7
Exploration of Vibrotactile Biofeedback Strategies to Induce Stance Time Asymmetries.
Can Prosthet Orthot J. 2021 Oct 29;5(1):36744. doi: 10.33137/cpoj.v5i1.36744. eCollection 2022.
8
Classification of gait phases based on a machine learning approach using muscle synergy.
Front Hum Neurosci. 2023 May 17;17:1201935. doi: 10.3389/fnhum.2023.1201935. eCollection 2023.
9
[A gait signal acquisition and parameter characterization method based on foot pressure detection combined with Azure Kinect system].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Apr 25;40(2):350-357. doi: 10.7507/1001-5515.202210026.

本文引用的文献

1
Goal Priorities Identified through Client-Centred Measurement in Individuals with Chronic Stroke.
Physiother Can. 2004 Jun;56(3):171-176. doi: 10.2310/6640.2004.00017.
2
Using sensors to measure activity in people with stroke.
Top Stroke Rehabil. 2011 Nov-Dec;18(6):746-57. doi: 10.1310/tsr1806-746.
3
Monitoring of posture allocations and activities by a shoe-based wearable sensor.
IEEE Trans Biomed Eng. 2011 Apr;58(4):983-90. doi: 10.1109/TBME.2010.2046738. Epub 2010 Apr 15.
5
What do motor "recovery" and "compensation" mean in patients following stroke?
Neurorehabil Neural Repair. 2009 May;23(4):313-9. doi: 10.1177/1545968308328727. Epub 2008 Dec 31.
6
Gait analysis using a shoe-integrated wireless sensor system.
IEEE Trans Inf Technol Biomed. 2008 Jul;12(4):413-23. doi: 10.1109/TITB.2007.899493.
8
Effects of stroke severity and training duration on locomotor recovery after stroke: a pilot study.
Neurorehabil Neural Repair. 2007 Mar-Apr;21(2):137-51. doi: 10.1177/1545968306295559.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验