Suppr超能文献

用于评估帕金森病患者步态和转弯的鞋上可穿戴传感器。

On-shoe wearable sensors for gait and turning assessment of patients with Parkinson's disease.

机构信息

Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

出版信息

IEEE Trans Biomed Eng. 2013 Jan;60(1):155-8. doi: 10.1109/TBME.2012.2227317.

Abstract

Assessment of locomotion through simple tests such as timed up and go (TUG) or walking trials can provide valuable information for the evaluation of treatment and the early diagnosis of people with Parkinson's disease (PD). Common methods used in clinics are either based on complex motion laboratory settings or simple timing outcomes using stop watches. The goal of this paper is to present an innovative technology based on wearable sensors on-shoe and processing algorithm, which provides outcome measures characterizing PD motor symptoms during TUG and gait tests. Our results on ten PD patients and ten age-matched elderly subjects indicate an accuracy ± precision of 2.8 ± 2.4 cm/s and 1.3 ± 3.0 cm for stride velocity and stride length estimation compared to optical motion capture, with the advantage of being practical to use in home or clinics without any discomfort for the subject. In addition, the use of novel spatio-temporal parameters, including turning, swing width, path length, and their intercycle variability, was also validated and showed interesting tendencies for discriminating patients in ON and OFF states and control subjects.

摘要

通过简单的测试,如计时起身行走测试(TUG)或步行试验来评估运动能力,可以为帕金森病(PD)患者的治疗评估和早期诊断提供有价值的信息。临床上常用的方法要么基于复杂的运动实验室环境,要么使用秒表进行简单的计时结果。本文的目的是介绍一种基于可穿戴传感器和处理算法的创新技术,该技术可在 TUG 和步态测试期间提供特征化 PD 运动症状的结果测量。我们在 10 名 PD 患者和 10 名年龄匹配的老年受试者上的结果表明,与光学运动捕捉相比,步速和步长估计的准确性±精度分别为 2.8±2.4cm/s 和 1.3±3.0cm,其优势在于实用,可在家庭或诊所中使用,而不会给受试者带来任何不适。此外,还验证了包括转弯、摆动宽度、路径长度及其循环间可变性在内的新的时空参数的使用,这些参数对于区分 ON 和 OFF 状态的患者和对照受试者具有有趣的鉴别趋势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验