Suppr超能文献

在喷射通气期间导致气体潴留的有效气管直径。

The effective tracheal diameter that causes air trapping during jet ventilation.

作者信息

Dworkin R, Benumof J L, Benumof R, Karagianes T G

机构信息

Department of Anesthesiology, University of California San Diego, La Jolla 92093.

出版信息

J Cardiothorac Anesth. 1990 Dec;4(6):731-6. doi: 10.1016/s0888-6296(09)90012-6.

Abstract

Jet ventilation consists of injection of gas at high flow rates through a small-diameter tracheal catheter. Air trapping (increase in end-expiratory lung volume) can occur during jet ventilation if the diameter of the trachea proximal to the tracheal catheter tip is too small (at least at one point in the trachea) to permit complete exhalation of the tidal volume around the tracheal catheter (ie, through the effective tracheal diameter). A mechanical lung model was used to determine the critical effective tracheal diameter at which air trapping starts to occur during jet ventilation. The experiment allowed derivation of a multivariable equation, namely: [formula: see text] to express the tidal volume produced by jet ventilation (y) as a function of gas flow rate (C), jet injection time (D), lung compliance (B), upper airway resistance (A), and effective tracheal diameter (E). As A to D increased and E decreased, y increased. More importantly, exhalation time was measured over the full range of values for A to E, and it was found that for every possible combination of values for A to D, there was always a unique critical effective tracheal diameter, 4.0 to 4.5 mm, that began to cause a very large increase in expiratory time (and with a sufficiently rapid respiratory rate [greater than 12 beats/min in this experiment], air trapping). Thus, when lung/jet ventilation factors tend to promote entry of jetted gas into the lungs (increased A to D, decreased E), even a small tidal volume has difficulty exiting the lung, if E is smaller than 4.5 mm.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

喷射通气是指通过一根小直径气管导管以高流速注入气体。如果气管导管尖端近端的气管直径过小(至少在气管的某一点),以至于无法使潮气量在气管导管周围完全呼出(即通过有效气管直径呼出),那么在喷射通气过程中就可能发生气体潴留(呼气末肺容积增加)。使用一个机械肺模型来确定在喷射通气过程中开始出现气体潴留时的临界有效气管直径。该实验推导出了一个多变量方程,即:[公式:见正文],以将喷射通气产生的潮气量(y)表示为气体流速(C)、喷射注入时间(D)、肺顺应性(B)、上气道阻力(A)和有效气管直径(E)的函数。随着A到D的增加以及E的减小,y增加。更重要的是,在A到E的整个取值范围内测量了呼气时间,结果发现对于A到D的每一种可能的取值组合,总是存在一个唯一的临界有效气管直径,即4.0至4.5毫米,该直径开始导致呼气时间大幅增加(并且在呼吸频率足够快时[本实验中大于12次/分钟],会出现气体潴留)。因此,当肺/喷射通气因素倾向于促进喷射气体进入肺部时(A到D增加,E减小),如果E小于4.5毫米,即使是小潮气量也难以从肺部呼出。(摘要截取自250字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验