Suppr超能文献

工程构象依赖性 VEGF 肽模拟物可有效抑制 VEGF 信号通路。

Engineered conformation-dependent VEGF peptide mimics are effective in inhibiting VEGF signaling pathways.

机构信息

Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA.

出版信息

J Biol Chem. 2011 Apr 15;286(15):13612-25. doi: 10.1074/jbc.M110.216812. Epub 2011 Feb 14.

Abstract

Angiogenesis, or formation of new blood vessels, is crucial to cancer tumor growth. Tumor growth, progression, and metastasis are critically influenced by the production of the pro-angiogenic vascular endothelial growth factor (VEGF). Promising anti-angiogenic drugs are currently available; however, their susceptibilities to drug resistance and long term toxicity are serious impediments to their use, thus requiring the development of new therapeutic approaches for safe and effective angiogenic inhibitors. In this work, peptides were designed to mimic the VEGF-binding site to its receptor VEGFR-2. The VEGF conformational peptide mimic, VEGF-P3(CYC), included two artificial cysteine residues, which upon cyclization constrained the peptide in a loop native-like conformation to better mimic the anti-parallel structure of VEGF. The engineered cyclic VEGF mimic peptide demonstrated the highest affinity to VEGFR-2 by surface plasmon resonance assay. The VEGF peptide mimics were evaluated as inhibitors in several in vitro assays in which VEGF-dependent signaling pathways were observed. All VEGF mimics inhibited VEGFR-2 phosphorylation with VEGF-P3(CYC) showing the highest inhibitory effects when compared with unstructured peptides. Additionally, we show in several angiogenic in vitro assays that all the VEGF mimics inhibited endothelial cell proliferation, migration, and network formation with the conformational VEGF-P3 (CYC) being the best. The VEGF-P3(CYC) also caused a significant delay in tumor development in a transgenic model of VEGF(+/-)Neu2-5(+/-). These results indicate that the structure-based design is important for the development of this peptidomimetic and for its anti-angiogenic effects.

摘要

血管生成,即新血管的形成,对肿瘤的生长至关重要。肿瘤的生长、进展和转移受到促血管生成血管内皮生长因子(VEGF)的产生的严重影响。目前有一些有前途的抗血管生成药物,但它们对药物耐药性和长期毒性的敏感性是其应用的严重障碍,因此需要开发新的治疗方法,以获得安全有效的血管生成抑制剂。在这项工作中,设计了肽来模拟 VEGF 与其受体 VEGFR-2 的结合位点。VEGF 构象肽模拟物 VEGF-P3(CYC) 包含两个人工半胱氨酸残基,环化后使肽在环中保持天然样构象,更好地模拟 VEGF 的反平行结构。工程化的环状 VEGF 模拟肽通过表面等离子体共振分析显示出与 VEGFR-2 最高的亲和力。通过几种体外测定评估了 VEGF 肽模拟物作为抑制剂的效果,观察了 VEGF 依赖性信号通路。所有 VEGF 模拟物均抑制 VEGFR-2 磷酸化,其中 VEGF-P3(CYC) 与无规卷曲肽相比显示出最高的抑制作用。此外,我们在几种血管生成体外测定中表明,所有 VEGF 模拟物均抑制内皮细胞增殖、迁移和网络形成,其中构象 VEGF-P3 (CYC) 效果最佳。VEGF-P3(CYC) 还在 VEGF(+/-)Neu2-5(+/-)转基因模型中显著延迟肿瘤的发展。这些结果表明,基于结构的设计对于这种肽模拟物的开发及其抗血管生成作用非常重要。

相似文献

1
Engineered conformation-dependent VEGF peptide mimics are effective in inhibiting VEGF signaling pathways.
J Biol Chem. 2011 Apr 15;286(15):13612-25. doi: 10.1074/jbc.M110.216812. Epub 2011 Feb 14.
3
Combination treatment with HER-2 and VEGF peptide mimics induces potent anti-tumor and anti-angiogenic responses in vitro and in vivo.
J Biol Chem. 2011 Apr 15;286(15):13626-37. doi: 10.1074/jbc.M110.216820. Epub 2011 Feb 16.
4
L-5F, an apolipoprotein A-I mimetic, inhibits tumor angiogenesis by suppressing VEGF/basic FGF signaling pathways.
Integr Biol (Camb). 2011 Apr;3(4):479-89. doi: 10.1039/c0ib00147c. Epub 2011 Feb 1.
5
Tissue inhibitor of metalloproteinases-3 peptides inhibit angiogenesis and choroidal neovascularization in mice.
PLoS One. 2013;8(3):e55667. doi: 10.1371/journal.pone.0055667. Epub 2013 Mar 1.
9
Anti-angiogenic effect of a chemically sulfated polysaccharide from Phellinus ribis by inhibiting VEGF/VEGFR pathway.
Int J Biol Macromol. 2020 Jul 1;154:72-81. doi: 10.1016/j.ijbiomac.2020.03.068. Epub 2020 Mar 11.
10
A KDR-binding peptide (ST100,059) can block angiogenesis, melanoma tumor growth and metastasis in vitro and in vivo.
Int J Oncol. 2011 Aug;39(2):401-8. doi: 10.3892/ijo.2011.1040. Epub 2011 May 11.

引用本文的文献

1
Perfluoroalkyl substances (PFAS) exposure and preeclampsia risk: Impaired angiogenesis through suppression of VEGF signaling.
Reprod Toxicol. 2025 Mar;132:108827. doi: 10.1016/j.reprotox.2024.108827. Epub 2024 Dec 26.
2
VEGF-Virus Interactions: Pathogenic Mechanisms and Therapeutic Applications.
Cells. 2024 Nov 4;13(21):1815. doi: 10.3390/cells13211815.
3
Structure-Based Design of Peptides Targeting VEGF/VEGFRs.
Pharmaceuticals (Basel). 2023 Jun 7;16(6):851. doi: 10.3390/ph16060851.
4
Intracellular virion traffic to the endosome driven by cell type specific sialic acid receptors determines parvovirus tropism.
Front Microbiol. 2023 Jan 23;13:1063706. doi: 10.3389/fmicb.2022.1063706. eCollection 2022.
5
Anti-angiogenic peptides application in cancer therapy; a review.
Res Pharm Sci. 2021 Oct 15;16(6):559-574. doi: 10.4103/1735-5362.327503. eCollection 2021 Dec.
6
Recent Applications of Retro-Inverso Peptides.
Int J Mol Sci. 2021 Aug 12;22(16):8677. doi: 10.3390/ijms22168677.
8
B-cell epitope peptide cancer vaccines: a new paradigm for combination immunotherapies with novel checkpoint peptide vaccine.
Future Oncol. 2020 Aug;16(23):1767-1791. doi: 10.2217/fon-2020-0224. Epub 2020 Jun 21.
9
Induction of humoral immune responses and inhibition of metastasis in mice by a VEGF peptide-based vaccine.
Iran J Basic Med Sci. 2020 Apr;23(4):507-514. doi: 10.22038/ijbms.2020.38508.9141.
10
A nanobody-derived mimotope against VEGF inhibits cancer angiogenesis.
J Enzyme Inhib Med Chem. 2020 Dec;35(1):1233-1239. doi: 10.1080/14756366.2020.1758690.

本文引用的文献

1
Therapeutic potential of directed tyrosine kinase inhibitor therapy in sarcomas.
Cancer Control. 2008 Jan;15(1):47-54. doi: 10.1177/107327480801500106.
4
Dimerization of VEGF receptors and implications for signal transduction: a computational study.
Biophys Chem. 2007 Jul;128(2-3):125-39. doi: 10.1016/j.bpc.2007.03.010. Epub 2007 Mar 24.
6
Protease inhibitors and their peptidomimetic derivatives as potential drugs.
Pharmacol Ther. 2007 Feb;113(2):354-68. doi: 10.1016/j.pharmthera.2006.09.001. Epub 2006 Sep 22.
7
Peptidomimetic inhibitors for activated protein C: implications for hemophilia management.
J Thromb Haemost. 2006 Nov;4(11):2411-6. doi: 10.1111/j.1538-7836.2006.02226.x.
8
Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis.
J Biochem Mol Biol. 2006 Sep 30;39(5):469-78. doi: 10.5483/bmbrep.2006.39.5.469.
9
Biophysical delivery of peptides: applicability for cancer therapy.
Peptides. 2006 Dec;27(12):3479-88. doi: 10.1016/j.peptides.2006.08.016. Epub 2006 Sep 25.
10
Post-transcriptional regulation of vascular endothelial growth factor: implications for tumor angiogenesis.
World J Gastroenterol. 2006 Aug 21;12(31):4937-42. doi: 10.3748/wjg.v12.i31.4937.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验