IEEE Trans Pattern Anal Mach Intell. 2011 Oct;33(10):2039-50. doi: 10.1109/TPAMI.2011.28. Epub 2011 Feb 17.
Wavelet kernels have been introduced for both support vector regression and classification. Most of these wavelet kernels do not use the inner product of the embedding space, but use wavelets in a similar fashion to radial basis function kernels. Wavelet analysis is typically carried out on data with a temporal or spatial relation between consecutive data points. We argue that it is possible to order the features of a general data set so that consecutive features are statistically related to each other, thus enabling us to interpret the vector representation of an object as a series of equally or randomly spaced observations of a hypothetical continuous signal. By approximating the signal with compactly supported basis functions and employing the inner product of the embedding L2 space, we gain a new family of wavelet kernels. Empirical results show a clear advantage in favor of these kernels.
已经为支持向量回归和分类引入了小波核。这些小波核中的大多数都不使用嵌入空间的内积,而是以类似于径向基函数核的方式使用小波。小波分析通常是在具有连续数据点之间的时间或空间关系的数据上进行的。我们认为,有可能对一般数据集的特征进行排序,使得连续的特征在统计上彼此相关,从而使我们能够将对象的向量表示解释为对假设连续信号的一系列等距或随机间隔的观测。通过使用紧支集基函数来逼近信号,并采用嵌入 L2 空间的内积,我们获得了一组新的小波核。经验结果表明,这些核具有明显的优势。