University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
J Am Chem Soc. 2011 Mar 9;133(9):3198-207. doi: 10.1021/ja111407m. Epub 2011 Feb 15.
The discovery through dynamic combinatorial chemistry (DCC) of a new generation of donor-acceptor [2]catenanes highlights the power of DCC to access unprecedented structures. While conventional thinking has limited the scope of donor-acceptor catenanes to strictly alternating stacks of donor (D) and acceptor (A) aromatic units, DCC is demonstrated in this paper to give access to unusual DAAD, DADD, and ADAA stacks. Each of these catenanes has specific structural requirements, allowing control of their formation. On the basis of these results, and on the observation that the catenanes represent kinetic bottlenecks in the reaction pathway, we propose a mechanism that explains and predicts the structures formed. Furthermore, the spontaneous assembly of catenanes in aqueous dynamic systems gives a fundamental insight into the role played by hydrophobic effect and donor-acceptor interactions when building such complex architectures.
通过动态组合化学(DCC)发现的新一代给体-受体[2]轮烷突出了 DCC 能够获得前所未有的结构的能力。虽然传统思维将给体-受体轮烷的范围限制为严格交替的给体(D)和受体(A)芳族单元堆叠,但本文证明 DCC 可以获得不寻常的 DAAD、DADD 和 ADAA 堆叠。这些轮烷中的每一种都具有特定的结构要求,允许控制它们的形成。基于这些结果,并且观察到轮烷在反应途径中代表动力学瓶颈,我们提出了一种解释和预测形成结构的机制。此外,轮烷在水动力系统中的自发组装为理解疏水性和供体-受体相互作用在构建此类复杂结构时所起的作用提供了基本的见解。