Suppr超能文献

软球流体的关联函数。

Pair correlation function of soft-sphere fluids.

机构信息

Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland.

出版信息

J Chem Phys. 2011 Feb 14;134(6):064115. doi: 10.1063/1.3554363.

Abstract

A closed-form analytic formula for the radial distribution function (RDF) or g(r) of inverse power fluids is proposed. The RDF is expressed as a sum of separate component functions, one monotonic and a series of exponentially damped oscillatory functions. Unlike previous treatments in the literature, this formula does not rely on patching different functional forms at arbitrary crossover distances. This expression, which we refer to as g(M)(r), yields the expected asymptotic behavior at large distance and reproduces the main features of the RDF generated by molecular dynamics (MD) simulations. The g(M) is applied to the soft n = 4 inverse power fluid, and it is shown that in this case seven or fewer terms are sufficient to represent accurately the MD-generated RDF over the entire fluid domain. The relative contributions of the separate terms of the g(M) as a function of density are analyzed and discussed. The key role played by the monotonic component function and two oscillatory terms is demonstrated. The origin of the crossover from the oscillatory to the monotonic behavior is shown to be the same as that recently proposed by Evans and Henderson [R. Evans and J. R. Henderson, J. Phys.: Condens. Matter 21, 474220 (2009)] for the dispersion interactions.

摘要

提出了一种反幂律流体的径向分布函数(RDF)或 g(r)的闭式解析公式。RDF 表示为单独分量函数的和,一个单调函数和一系列指数衰减的振荡函数。与文献中的先前处理方法不同,该公式不依赖于在任意交叉距离处修补不同的函数形式。我们将此表达式称为 g(M)(r),在大距离处产生预期的渐近行为,并再现分子动力学(MD)模拟生成的 RDF 的主要特征。将 g(M)应用于软 n = 4 反幂律流体,结果表明,在这种情况下,七个或更少的项足以在整个流体域中准确表示 MD 生成的 RDF。分析和讨论了 g(M)的单独项作为密度的函数的相对贡献。证明了单调分量函数和两个振荡项的关键作用。表明从振荡到单调行为的转变的起源与 Evans 和 Henderson [R. Evans 和 J. R. Henderson,J. Phys.:Condens. Matter 21, 474220 (2009)]最近提出的用于色散相互作用的起源相同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验