Suppr超能文献

简单流体中的单粒子力分布。

Single particle force distributions in simple fluids.

机构信息

School of Physical Sciences, University of Kent, Canterbury, Kent CT2 7NH, United Kingdom.

出版信息

J Chem Phys. 2012 Sep 7;137(9):094505. doi: 10.1063/1.4748103.

Abstract

The distribution function, W(F), of the magnitude of the net force, F, on particles in simple fluids is considered, which follows on from our previous publication [A. C. Brańka, D. M. Heyes, and G. Rickayzen, J. Chem. Phys. 135, 164507 (2011)] concerning the pair force, f, distribution function, P(f), which is expressible in terms of the radial distribution function. We begin by discussing the force on an impurity particle in an otherwise pure fluid but later specialize to the pure fluid, which is studied in more detail. An approximate formula, expected to be valid asymptotically, for W(F) referred to as, W(1)(F) is derived by taking into account only binary spatial correlations in the fluid. It is found that W(1)(F) = P(f). Molecular dynamics simulations of W for the inverse power (IP) and Lennard-Jones potential fluids show that, as expected, W(F) and P(f) agree well in the large force limit for a wide range of densities and potential forms. The force at which the maximum in W(F) occurs for the IP fluids follows a different algebraic dependence with density in low and high density domains of the equilibrium fluid. Other characteristic features in the force distribution functions also exhibit the same trends. An exact formula is derived relating W(F) to P(x)(F(x)), the distribution function of the x-cartesian components of the net force, F(x), on a particle. W(F) and P(x)(F(x)) have the same analytical forms (apart from constants) in the low and high force limits.

摘要

我们考虑了简单流体中净力 F 的大小的分布函数 W(F),这是我们之前关于对力 f 分布函数 P(f)的研究的延续,该分布函数可以用径向分布函数表示。我们首先讨论了在纯流体中杂质粒子所受的力,但后来专门研究了纯流体,对其进行了更详细的研究。通过仅考虑流体中的二元空间相关,我们推导出了一个近似公式,称为 W(1)(F),该公式预计在渐近情况下有效。发现 W(1)(F) = P(f)。对于幂律(IP)和 Lennard-Jones 势能流体,我们进行了分子动力学模拟,结果表明,如预期的那样,在广泛的密度和势能形式范围内,在大力极限下,W(F)和 P(f)非常吻合。对于 IP 流体,在 W(F)中最大值出现的力与平衡流体的低密度和高密度区域中的密度遵循不同的代数关系。其他特征在力分布函数中也表现出相同的趋势。我们推导出了一个将 W(F)与 P(x)(F(x))相关联的精确公式,P(x)(F(x))是粒子上净力 F(x)的 x 笛卡尔分量的分布函数。在低力和高力极限下,W(F)和 P(x)(F(x))具有相同的分析形式(除常数外)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验