ARC Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville 4810, Australia.
J Chem Phys. 2011 Feb 14;134(6):064319. doi: 10.1063/1.3544210.
Comparison of experimental and theoretical transport data for electron swarms in water vapour over a wide range of fields provides a rigorous test of (e(-), H(2)O) scattering cross sections over a correspondingly broad range of energies. That like should be compared with like is axiomatic, but the definition of transport coefficients at high fields, when non-conservative processes are significant, has long been contentious. This paper revisits and distills the most essential aspects of the definition and calculation of transport coefficients, giving numerical results for the drift velocity and ionisation coefficient of electrons in water vapour. In particular, the relationship between the theoretically calculated bulk drift velocities of [K. F. Ness and R. E. Robson, Phys. Rev. A 38, 1446 (1988)] and the experimental "arrival time spectra" drift velocity data of Hasegawa et al. [J. Phys. D 40(8), 2495 (2007)] is established. This enables the Hasegawa et al. data to be reconciliated with the previous literature, and facilitates selection of the best (e(-), H(2)O) cross section set.
在广泛的场强范围内,对电子在水蒸气中的输运数据进行实验和理论比较,为(e(-), H(2)O)散射截面在相应的宽能区范围内提供了严格的检验。类似的应该进行比较,这是不言而喻的,但在非保守过程显著的高场强下,传输系数的定义一直存在争议。本文重新审视并提炼了传输系数定义和计算的最基本方面,给出了水蒸气中电子漂移速度和电离系数的数值结果。特别是,建立了 [K. F. Ness 和 R. E. Robson, Phys. Rev. A 38, 1446 (1988)] 理论计算的体漂移速度与 Hasegawa 等人的实验“到达时间谱”漂移速度数据之间的关系[J. Phys. D 40(8), 2495 (2007)]。这使得 Hasegawa 等人的数据能够与先前的文献相协调,并有助于选择最佳的(e(-), H(2)O)截面集。